论文标题
$(q,t)$ - Cartan Matrix专门用于$ Q = 1 $
The $(q,t)$-Cartan matrix specialized at $q=1$
论文作者
论文摘要
$(q,t)$ - Cartan Matrix专业的$ t = 1 $,通常称为量子cartan矩阵,与(i)其不近距离的量子仿射代数的表示理论以及(ii)量子单位坐标坐标坐标代数,根系和量子群群集Algebra的kew-ew-s-ew-s-ew-Symmmeter类型。在本文中,我们研究了$(q,t)$ - 卡坦矩阵,专门为$ q = 1 $,称为$ t $ Quantized的Cartan矩阵,并研究与(II')其相应的量子一能坐标代数,根系和量子群的关系。
The $(q,t)$-Cartan matrix specialized at $t=1$, usually called the quantum Cartan matrix, has deep connections with (i) the representation theory of its untwisted quantum affine algebra, and (ii) quantum unipotent coordinate algebra, root system and quantum cluster algebra of kew-symmetric type. In this paper, we study the $(q,t)$-Cartan matrix specialized at $q=1$, called the $t$-quantized Cartan matrix, and investigate the relations with (ii') its corresponding quantum unipotent coordinate algebra, root system and quantum cluster algebra of skew-symmetrizable type.