论文标题

DICP:多普勒迭代最接近点算法

DICP: Doppler Iterative Closest Point Algorithm

论文作者

Hexsel, Bruno, Vhavle, Heethesh, Chen, Yi

论文摘要

在本文中,我们提出了一种用于点云配准的新型算法,该算法是用于测量每次返回瞬时径向速度的范围传感器:多普勒ICP。 ICP的现有变体仅依赖几何或其他功能通常无法在具有非固有特征和/或重复的几何结构(例如走廊,隧道,高速公路和桥梁)的情况下正确估计传感器的运动。我们提出了一个新的多普勒速度目标函数,以利用每个点的多普勒测量值和传感器的当前运动估计值的兼容性。我们共同优化了多普勒速度目标函数和几何目标函数,该函数即使在特征受到的环境中也充分限制了点云对齐问题。此外,通过将点从通常降解ICP解决方案降解的动态目标上修剪来改进用于对齐的对应匹配。我们对从实际传感器和模拟收集的数据进行评估。我们的结果表明,随着增加多普勒速度残差项,与仅依赖几何残留物的经典点对平面ICP相比,我们的方法平均可以显着提高登记精度,并且平均而更快地收敛。

In this paper, we present a novel algorithm for point cloud registration for range sensors capable of measuring per-return instantaneous radial velocity: Doppler ICP. Existing variants of ICP that solely rely on geometry or other features generally fail to estimate the motion of the sensor correctly in scenarios that have non-distinctive features and/or repetitive geometric structures such as hallways, tunnels, highways, and bridges. We propose a new Doppler velocity objective function that exploits the compatibility of each point's Doppler measurement and the sensor's current motion estimate. We jointly optimize the Doppler velocity objective function and the geometric objective function which sufficiently constrains the point cloud alignment problem even in feature-denied environments. Furthermore, the correspondence matches used for the alignment are improved by pruning away the points from dynamic targets which generally degrade the ICP solution. We evaluate our method on data collected from real sensors and from simulation. Our results show that with the added Doppler velocity residual terms, our method achieves a significant improvement in registration accuracy along with faster convergence, on average, when compared to classical point-to-plane ICP that solely relies on geometric residuals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源