论文标题

协变量调整的对数秩检验:保证效率增益和通用适用性

Covariate-Adjusted Log-Rank Test: Guaranteed Efficiency Gain and Universal Applicability

论文作者

Ye, Ting, Shao, Jun, Yi, Yanyao

论文摘要

非参数协变量调整被考虑用于对数秩类型的治疗效果测试,并使用右审查的临床试验中的右时间为事件数据,该数据应用了协变量自适应随机化。我们提出的协变量调整的对数秩检验具有简单的明确公式,并且在未经调整的测试中有保证的效率提高。我们还表明,我们提出的测试实现了普遍的适用性,因为可以将相同的测试公式普遍应用于简单的随机化以及所有常用的协变量自适应随机化方案,例如分层的置换块和Pocock和Simon的最小化,这不是均受到均受过调整的对数式对数式测试的属性。我们的方法得到了新的渐近理论和I型误差和测试功能的经验结果的支持。

Nonparametric covariate adjustment is considered for log-rank type tests of treatment effect with right-censored time-to-event data from clinical trials applying covariate-adaptive randomization. Our proposed covariate-adjusted log-rank test has a simple explicit formula and a guaranteed efficiency gain over the unadjusted test. We also show that our proposed test achieves universal applicability in the sense that the same formula of test can be universally applied to simple randomization and all commonly used covariate-adaptive randomization schemes such as the stratified permuted block and Pocock and Simon's minimization, which is not a property enjoyed by the unadjusted log-rank test. Our method is supported by novel asymptotic theory and empirical results for type I error and power of tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源