论文标题

双学习音乐构图和舞蹈编舞

Dual Learning Music Composition and Dance Choreography

论文作者

Wu, Shuang, Li, Zhenguang, Lu, Shijian, Cheng, Li

论文摘要

音乐和舞蹈一直是人类活动的支柱,为几乎所有社会的文化,社会和娱乐活动做出了巨大贡献。尽管音乐和舞蹈逐渐成为两个独立学科的逐步系统化,但他们的亲密联系是不可否认的,而没有另一个艺术形式的一种艺术形式通常是不完整的。最近的研究工作研究了以音乐为条件的舞蹈序列的生成模型。但是,为给定舞蹈创作音乐的双重任务在很大程度上被忽略了。在本文中,我们提出了一个新颖的扩展,在该扩展过程中,我们以双重学习方法将这两个任务共同建模。为了利用这两种方式的二元性,我们引入了一个最佳的传输目标,以使特征嵌入以及周期一致性损失以促进总体一致性。实验结果表明,我们的双重学习框架改善了个人任务绩效,提供了产生的音乐作品和舞蹈编舞,这些舞蹈和舞蹈编舞是现实且忠实于条件投入的。

Music and dance have always co-existed as pillars of human activities, contributing immensely to the cultural, social, and entertainment functions in virtually all societies. Notwithstanding the gradual systematization of music and dance into two independent disciplines, their intimate connection is undeniable and one art-form often appears incomplete without the other. Recent research works have studied generative models for dance sequences conditioned on music. The dual task of composing music for given dances, however, has been largely overlooked. In this paper, we propose a novel extension, where we jointly model both tasks in a dual learning approach. To leverage the duality of the two modalities, we introduce an optimal transport objective to align feature embeddings, as well as a cycle consistency loss to foster overall consistency. Experimental results demonstrate that our dual learning framework improves individual task performance, delivering generated music compositions and dance choreographs that are realistic and faithful to the conditioned inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源