论文标题

第一类积分方程的过度确定系统的正则最小值解决方案

Regularized minimal-norm solution of an overdetermined system of first kind integral equations

论文作者

de Alba, Patricia Díaz, Fermo, Luisa, Pes, Federica, Rodriguez, Giuseppe

论文摘要

第一类积分方程的过度确定系统出现在许多应用中。当右侧离散化时,由此产生的有限数据问题就会不足,并且可以无限地接受许多解决方案。我们提出了一种数值方法,以在存在边界约束的情况下计算最小值解决方案。该算法源自Riesz代表定理,并在繁殖的内核希尔伯特空间中运行。由于所得线性系统的条件很大,因此我们根据离散参数构建正则化方法。它基于最小值解决方案的扩展,从定义问题的积分运算符的奇异函数方面。测试了两种估计技术的自动确定正则化参数,即差异原理和L-曲线方法。关于两个人工测试问题的数值结果证明了该方法的出色性能。最后,研究了一个典型的地球物理应用模型,该模型重现了频域电磁诱导装置的读数。结果表明,当寻求的解决方案平滑时,新方法非常有效,但即使对于非平滑溶液,也可以提供有关解决方案的重要信息。

Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but gives significant information on the solution even for non-smooth solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源