论文标题

重新审视3D可压缩热传导磁流体动力方程的全球强溶液

Global strong solution for 3D compressible heat-conducting magnetohydrodynamic equations revisited

论文作者

Liu, Yang, Zhong, Xin

论文摘要

我们重新审视了可压缩的热传导磁性水动力方程的3D库奇问题,真空远至野外密度。通过精致的能量方法,我们得出了强大解决方案的全球存在和独特性,规定$(\ |ρ_0\ | _ {l^\ infty} +1) \ |ρ_0\ | _ {l^\ infty} +1)^2 \ big(\ | \ sqrt {ρ_0} u_0} u_0 \ | _ {l^2}^2}^2 +\ | b_0 \ | b_0 \ | ________________________________ {l^2}^2}^2}^2 \ big) u_0 \ | _ {l^2}^2+(\ |ρ_0\ | _ {l^\ infty} +1)\ big(\ | \ | \ sqrt {ρ_0} e_0} e_0}适当小。特别是,较小的条件与初始数据的任何规范无关。这项工作改善了我们以前的结果[18,19]。

We revisit the 3D Cauchy problem of compressible heat-conducting magnetohydrodynamic equations with vacuum as far field density. By delicate energy method, we derive global existence and uniqueness of strong solutions provided that $(\|ρ_0\|_{L^\infty}+1)\big[\|ρ_0\|_{L^3}+ \|ρ_0\|_{L^\infty}+1)^2\big(\|\sqrt{ρ_0}u_0\|_{L^2}^2 +\|b_0\|_{L^2}^2\big)\big]\big[\|\nabla u_0\|_{L^2}^2+(\|ρ_0\|_{L^\infty}+1)\big(\|\sqrt{ρ_0}E_0\|_{L^2}^2+\|\nabla b_0\|_{L^2}^2\big)\big]$ is properly small. In particular, the smallness condition is independent of any norms of the initial data. This work improves our previous results [18, 19].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源