论文标题

利用inlier对应关系的点比例

Leveraging Inlier Correspondences Proportion for Point Cloud Registration

论文作者

Zhu, Lifa, Guan, Haining, Lin, Changwei, Han, Renmin

论文摘要

在基于特征学习的点云注册中,正确的对应结构对于随后的转换估计至关重要。但是,从点云中提取判别特征仍然是一个挑战,尤其是当输入部分且由无法区分的表面(平面,光滑的表面等)组成时。结果,与两个未对准点云之间精确匹配的近对应的比例超出了满意度。在此激励的情况下,我们设计了几种技术来通过利用Inlier Formalentics比例来促进基于特征学习的点云注册性能:一种金字塔层次结构解码器来表征多个尺度中的点特征,一种一致的投票策略,一种保持一致的对应关系和几何形状的对应关系,并且几何形状指导的编码模块以对几何模块进行数量特征,以考虑考虑几何特征。基于上述技术,我们构建了几何学引导的一致网络(GCNET),并通过室内,室外和以对象为中心的合成数据集来挑战GCNET。全面的实验表明,GCNET的表现优于最先进的方法和GCNET中使用的技术是模型 - 静态的,可以轻松地迁移到其他基于特征的深度学习或传统的注册方法,并大大提高性能。该代码可在https://github.com/zhulf0804/ngenet上找到。

In feature-learning based point cloud registration, the correct correspondence construction is vital for the subsequent transformation estimation. However, it is still a challenge to extract discriminative features from point cloud, especially when the input is partial and composed by indistinguishable surfaces (planes, smooth surfaces, etc.). As a result, the proportion of inlier correspondences that precisely match points between two unaligned point clouds is beyond satisfaction. Motivated by this, we devise several techniques to promote feature-learning based point cloud registration performance by leveraging inlier correspondences proportion: a pyramid hierarchy decoder to characterize point features in multiple scales, a consistent voting strategy to maintain consistent correspondences and a geometry guided encoding module to take geometric characteristics into consideration. Based on the above techniques, We build our Geometry-guided Consistent Network (GCNet), and challenge GCNet by indoor, outdoor and object-centric synthetic datasets. Comprehensive experiments demonstrate that GCNet outperforms the state-of-the-art methods and the techniques used in GCNet is model-agnostic, which could be easily migrated to other feature-based deep learning or traditional registration methods, and dramatically improve the performance. The code is available at https://github.com/zhulf0804/NgeNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源