论文标题

生物启发的基于皮质的快速代码簿生成

Bioinspired Cortex-based Fast Codebook Generation

论文作者

Yucel, Meric, Bagis, Serdar, Sertbas, Ahmet, Sarikaya, Mehmet, Ustundag, Burak Berk

论文摘要

人工智能的主要原型是开发算法,促进时间效率和准确性,同时提高概括性能。即使是机器学习方面的最新发展,关键限制仍然是从初始数据中提取效率低下的功能,这对于性能优化至关重要。在这里,我们介绍了一种受大脑中感觉皮质网络启发的特征提取方法。该算法被称为生物启发的皮质,从具有较高计算效率的流信号的正交特征提供收敛,同时以压缩形式处理数据。我们使用人工创建的复杂数据与常用的传统聚类算法(例如桦木,GMM和K-Means)进行了比较来证明新算法的性能。虽然数据处理时间大大减少,秒与小时相对于小时数,但在新算法中编码扭曲基本相同,为更好的概括提供了基础。尽管我们在本文中显示了Cortex模型在聚类和矢量量化中的出色性能,但它还为机器学习基本组件(例如大型范围应用中的推理,异常检测和分类)提供了有效的实施机会,例如财务,网络安全性和医疗保健。

A major archetype of artificial intelligence is developing algorithms facilitating temporal efficiency and accuracy while boosting the generalization performance. Even with the latest developments in machine learning, a key limitation has been the inefficient feature extraction from the initial data, which is essential in performance optimization. Here, we introduce a feature extraction method inspired by sensory cortical networks in the brain. Dubbed as bioinspired cortex, the algorithm provides convergence to orthogonal features from streaming signals with superior computational efficiency while processing data in compressed form. We demonstrate the performance of the new algorithm using artificially created complex data by comparing it with the commonly used traditional clustering algorithms, such as Birch, GMM, and K-means. While the data processing time is significantly reduced, seconds versus hours, encoding distortions remain essentially the same in the new algorithm providing a basis for better generalization. Although we show herein the superior performance of the cortex model in clustering and vector quantization, it also provides potent implementation opportunities for machine learning fundamental components, such as reasoning, anomaly detection and classification in large scope applications, e.g., finance, cybersecurity, and healthcare.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源