论文标题

关于粒子群优化方法的全局收敛性

On the Global Convergence of Particle Swarm Optimization Methods

论文作者

Huang, Hui, Qiu, Jinniao, Riedl, Konstantin

论文摘要

在本文中,我们通过使用随机微积分的工具和偏微分方程的分析为著名的粒子群优化方法提供了严格的合并分析。基于粒子动力学作为随机微分方程系统的时间连续公式,我们将收敛到可能是非凸的全局最小化器,并分为两个步骤。首先,我们通过分析粒子分布方差的时间进化来证明相关平均场动力学的共识形成。然后,我们证明,通过采用渐近拉普拉斯原理和对目标函数能量景观的障碍条件,这种共识接近全球最小化器。这些结果允许使用记忆机制,并保留一类丰富的目标,提供了超级参数和初始基准的一定条件。在第二步中,至少对于没有内存效应的情况,我们就粒子群优化的平均场近似值提供了定量结果,该结果指定了相互作用的粒子系统与相关的平均场限制的收敛性。结合这两个结果,可以证明具有可证明的多项式复杂性的数值粒子群优化方法的全局收敛保证。为了证明该方法的适用性,我们提出了一个有效且可行的实现,该实现尤其是在机器学习中的竞争性和良好理解的高维基准问题上进行了测试。

In this paper we provide a rigorous convergence analysis for the renowned particle swarm optimization method by using tools from stochastic calculus and the analysis of partial differential equations. Based on a time-continuous formulation of the particle dynamics as a system of stochastic differential equations, we establish convergence to a global minimizer of a possibly nonconvex and nonsmooth objective function in two steps. First, we prove consensus formation of an associated mean-field dynamics by analyzing the time-evolution of the variance of the particle distribution. We then show that this consensus is close to a global minimizer by employing the asymptotic Laplace principle and a tractability condition on the energy landscape of the objective function. These results allow for the usage of memory mechanisms, and hold for a rich class of objectives provided certain conditions of well-preparation of the hyperparameters and the initial datum. In a second step, at least for the case without memory effects, we provide a quantitative result about the mean-field approximation of particle swarm optimization, which specifies the convergence of the interacting particle system to the associated mean-field limit. Combining these two results allows for global convergence guarantees of the numerical particle swarm optimization method with provable polynomial complexity. To demonstrate the applicability of the method we propose an efficient and parallelizable implementation, which is tested in particular on a competitive and well-understood high-dimensional benchmark problem in machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源