论文标题

$ \ mathbb {f} _ {\ ell} $的天鹅导体的变化

Variation of the Swan conductor of an $\mathbb{F}_{\ell}$-sheaf on a rigid annulus

论文作者

Bah, Amadou

论文摘要

令$ c = a(r,r')$是Radii $ r $和$ r'$($ r <r'\ in \ mathbb {q} _ {\ geq 0} $)的封闭环,该nulus在具有特征性$ p> 0 $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> $ p> 0 $的完整离散估值字段上。到$ \ mathbb {f} _ {\ ell} $ - $ c $上的模块$ \ mathcal {f} $的étale捆$ \ MATHRM {sw} _ {\ MATHRM {as}}(\ Mathcal {f},\ cdot):[r,r,r'] \ cap \ cap \ mathbb {q} _ {\ geq 0} \ to \ mathbb {q} $ \ MATHCAL {f} \ lvert c^{[t]} $ - $ \ Mathcal {f} $限制$ 0 $ -0 $ -Thickness的$ c $ t $ $ c $ t $的$ c $ c $ c $ c $ thickness的$ c^{[t]} $沿着$ c^$ c^$ c^$ c^$ c^$ c^$ 0 $ 0 $ thickness-我们表明,此功能是连续的,凸和分段线性的,在$ \ Mathcal {f} $的RAMIFIENT点的半径之外,有限许多都是整数的斜率。对于两个不同的半径$ t $和$ t'$,在$ \ mathcal {f} $的连续RADII之间,我们计算$ \ Mathrm {sw} _ {\ Mathrm {as}}}}}}}}(\ nathcal {f},\ nater {f},\ cdot $ t $ t $ t $ t $ t'的斜率差异$ \ MATHCAL {F} $的循环$ t $和$ t'$。

Let $C=A(r, r')$ be a closed annulus of radii $r$ and $r'$ ($r < r' \in \mathbb{Q}_{\geq 0}$) over a complete discrete valuation field with algebraically closed residue field of characteristic $p>0$. To an étale sheaf of $\mathbb{F}_{\ell}$-modules $\mathcal{F}$ on $C$, ramified at most at a finite set of rigid points of $C$, we associate an Abbes-Saito Swan conductor function $\mathrm{sw}_{\mathrm{AS}}(\mathcal{F}, \cdot): [r, r']\cap \mathbb{Q}_{\geq 0} \to \mathbb{Q}$ which, for the variable $t$, measures the ramification of $\mathcal{F}\lvert C^{[t]}$ - the restriction of $\mathcal{F}$ to the sub-annulus $C^{[t]}$ of $C$ of radius $t$ with $0$-thickness - along the special fiber of the normalized integral model of $C^{[t]}$. We show that this function is continuous, convex and piecewise linear outside the radii of the ramification points of $\mathcal{F}$, with finitely many slopes which are all integers. For two distinct radii $t$ and $t'$ lying between consecutive radii of ramification points of $\mathcal{F}$, we compute the difference of the slopes of $\mathrm{sw}_{\mathrm{AS}}(\mathcal{F}, \cdot)$ at $t$ and $t'$ as the difference of the orders of the characteristic cycles of $\mathcal{F}$ at $t$ and $t'$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源