论文标题
在径向情况下,具有反方势的能量关键波方程的孤子分辨率
Soliton resolution for the energy critical wave equation with inverse-square potential in the radial case
论文作者
论文摘要
在本文中,我们为径向情况和所有维度$ n \ geq3 $的能量临界波方程的孤子分辨率建立了反向平方电位的分辨率。径向线性操作员$ \ mathcal {l} _a:= - δ+\ frac {a} {| x |^2} = a^*a $,对于能量渠道至关重要,其中$ a $是第一阶差异操作员,$ a^*$是其邻接运营商。多螺旋体的调制和分析是在函数空间中执行的$ \ dot {h}^1_a(\ bbb r^n)\ times l^2(\ bbb r^n)$与$ \ Mathcal {l} _a $相关。
In this paper, we establish the soliton resolution for the energy critical wave equation with inverse square potential in the radial case and in all dimensions $N\geq3$. The structure of the radial linear operator $\mathcal{L}_a :=-Δ+\frac{a}{|x|^2}=A^*A$, is essential for the channel of energy, where $A$ is a first order differential operator and $A^*$ is its adjoint operator. Modulation and analysis of the multi-solitons are performed in the function spaces $\dot{H}^1_a(\Bbb R^N)\times L^2(\Bbb R^N)$ associated with $\mathcal{L}_a$.