论文标题
全体形态谎言小组对Danielewski表面的行动
Holomorphic Lie Group Actions on Danielewski Surfaces
论文作者
论文摘要
我们证明,任何谎言子组$ g $(具有有限的连接组件)的无限维拓扑组$ \ mathcal g $,这是两个封闭子组的合并产品,可以将其连接到一个因素。我们将此结果应用于对DanieLewski表面的谎言组动作,按照透明组的要素(直至结合)。
We prove that any Lie subgroup $G$ (with finitely many connected components) of an infinite-dimensional topological group $\mathcal G$ which is an amalgamated product of two closed subgroups, can be conjugated to one factor. We apply this result to classify Lie group actions on Danielewski surfaces by elements of the overshear group (up to conjugation).