论文标题
使用条件可逆神经网络的系外行星表征
Exoplanet Characterization using Conditional Invertible Neural Networks
论文作者
论文摘要
系外行星内部的表征是一个反问题,它需要诸如贝叶斯推论之类的统计方法才能解决。当前方法采用马尔可夫链蒙特卡洛(MCMC)采样来推断给定系外行星的行星结构参数的后验概率。这些方法很耗时,因为它们需要计算大量行星结构模型。为了加快表征系外行星的推理过程,我们建议使用条件可逆神经网络(CINN)来计算内部结构参数的后验概率。 CINN是一种特殊类型的神经网络,在解决反问题方面表现出色。我们使用FREIA构建了CINN,然后在$ 5.6 \ cdot 10^6 $内部结构模型的数据库上训练,内部结构参数和可观察到的特征(即行星质量,行星半径,行星半径和宿主星的组成)之间的反映射。将CINN方法与大都会杂货店MCMC进行了比较。为此,我们使用MCMC方法和受过训练的CINN重复了系外行星K2-111 B的表征。我们表明,两种方法的内部结构参数的推断后验概率非常相似,并且在外部球星的水含量中看到了最大的差异。因此,CINN是标准耗时抽样方法的可能替代方法。实际上,使用cinn可以比使用MCMC方法更快地推断外部球星组合物的数量级,但是,它仍然需要计算大型内部结构数据库来训练cinnn。由于该数据库仅计算一次,因此我们发现使用CINN比MCMC更有效,而使用相同的CINN表征了10个以上的系外行星。
The characterization of an exoplanet's interior is an inverse problem, which requires statistical methods such as Bayesian inference in order to be solved. Current methods employ Markov Chain Monte Carlo (MCMC) sampling to infer the posterior probability of planetary structure parameters for a given exoplanet. These methods are time consuming since they require the calculation of a large number of planetary structure models. To speed up the inference process when characterizing an exoplanet, we propose to use conditional invertible neural networks (cINNs) to calculate the posterior probability of the internal structure parameters. cINNs are a special type of neural network which excel in solving inverse problems. We constructed a cINN using FrEIA, which was then trained on a database of $5.6\cdot 10^6$ internal structure models to recover the inverse mapping between internal structure parameters and observable features (i.e., planetary mass, planetary radius and composition of the host star). The cINN method was compared to a Metropolis-Hastings MCMC. For that we repeated the characterization of the exoplanet K2-111 b, using both the MCMC method and the trained cINN. We show that the inferred posterior probability of the internal structure parameters from both methods are very similar, with the biggest differences seen in the exoplanet's water content. Thus cINNs are a possible alternative to the standard time-consuming sampling methods. Indeed, using cINNs allows for orders of magnitude faster inference of an exoplanet's composition than what is possible using an MCMC method, however, it still requires the computation of a large database of internal structures to train the cINN. Since this database is only computed once, we found that using a cINN is more efficient than an MCMC, when more than 10 exoplanets are characterized using the same cINN.