论文标题

内容可寻址的记忆,而无需通过固定脚手架进行异质联系而没有灾难性的遗忘

Content Addressable Memory Without Catastrophic Forgetting by Heteroassociation with a Fixed Scaffold

论文作者

Sharma, Sugandha, Chandra, Sarthak, Fiete, Ila R.

论文摘要

由于可以通过项目的部分或损坏的版本来召回内容,因此可以召回内容的内容,因此可以召回该项目的储存物品,显示出低于容量以下的少数信息密度模式和“记忆悬崖”之外的少数信息,从而在所有存储模式的灾难性损失中插入了单个附加模式。我们提出了一种新颖的凸轮体系结构,具有异质关联(网状)的内存脚手架(网状),它分配了内部吸引力动力学的问题,并与外部内容相关联,以生成无记忆悬崖的凸轮连续性:少数模式与完整的信息恢复相匹配的标准凸轮匹配,同时插入更多模式,并在每种模式中插入更多的模式,并在每种模式之间进行良好的折磨,并添加了良好的数字数量和数量良好的数字和数量的数字。网格是由大脑内ha骨 - 海马记忆电路的架构进行的,是一种具有成对相互作用的三方结构,它使用了一组预定的内部稳定状态,以及内部状态和任意外部模式之间的异性关联。我们通过分析和实验表明,对于任何数量的存储模式,网格几乎饱和cam网络的总信息(由突触数量给出),表现优于所有现有的CAM模型。

Content-addressable memory (CAM) networks, so-called because stored items can be recalled by partial or corrupted versions of the items, exhibit near-perfect recall of a small number of information-dense patterns below capacity and a 'memory cliff' beyond, such that inserting a single additional pattern results in catastrophic loss of all stored patterns. We propose a novel CAM architecture, Memory Scaffold with Heteroassociation (MESH), that factorizes the problems of internal attractor dynamics and association with external content to generate a CAM continuum without a memory cliff: Small numbers of patterns are stored with complete information recovery matching standard CAMs, while inserting more patterns still results in partial recall of every pattern, with a graceful trade-off between pattern number and pattern richness. Motivated by the architecture of the Entorhinal-Hippocampal memory circuit in the brain, MESH is a tripartite architecture with pairwise interactions that uses a predetermined set of internally stabilized states together with heteroassociation between the internal states and arbitrary external patterns. We show analytically and experimentally that for any number of stored patterns, MESH nearly saturates the total information bound (given by the number of synapses) for CAM networks, outperforming all existing CAM models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源