论文标题
素描随机评估功能
Sketching stochastic valuation functions
论文作者
论文摘要
我们考虑绘制设定估值功能的问题,该问题被定义为对独立随机项目值的估值函数的期望。我们表明,对于满足较弱的均匀性条件或某些其他条件的单调亚辅助或子模块估值功能,存在$ o(k \ log(k))$支撑大小的物品值的分布,从而产生草图估值功能,这是恒定的估算功能,这是恒定的因素近似值,对于任何相等或$ k $ $ k $ k $ $ k $ by noce becialtion of abor abor y beartialition。可以分别为每个项目的值分布的算法有效计算离散的分布。我们的结果在适应应用中产生的广泛估值功能的条件下,例如与团队成员最佳表现相对应的团队的价值,替代生产功能的持续弹性表现出在经济学和消费者理论等中使用的回报降低。草图评估功能对于找到最佳设置选择和福利最大化等优化问题的近似解决方案特别有价值。它们可以对近似值Oracle查询进行计算有效评估,并为基础优化问题提供近似保证。
We consider the problem of sketching a set valuation function, which is defined as the expectation of a valuation function of independent random item values. We show that for monotone subadditive or submodular valuation functions satisfying a weak homogeneity condition, or certain other conditions, there exist discretized distributions of item values with $O(k\log(k))$ support sizes that yield a sketch valuation function which is a constant-factor approximation, for any value query for a set of items of cardinality less than or equal to $k$. The discretized distributions can be efficiently computed by an algorithm for each item's value distribution separately. Our results hold under conditions that accommodate a wide range of valuation functions arising in applications, such as the value of a team corresponding to the best performance of a team member, constant elasticity of substitution production functions exhibiting diminishing returns used in economics and consumer theory, and others. Sketch valuation functions are particularly valuable for finding approximate solutions to optimization problems such as best set selection and welfare maximization. They enable computationally efficient evaluation of approximate value oracle queries and provide an approximation guarantee for the underlying optimization problem.