论文标题

在周期性托里的脆弱性上

On the fragility of periodic tori for families of symplectic twist maps

论文作者

Arnaud, Marie-Claude, Massetti, Jessica Elisa, Sorrentino, Alfonso

论文摘要

在本文中,我们研究了拉格朗日周期性托里(Tori)的脆弱性,用于$ 2D $维环的符号扭曲图,并证明了完全可以整合的扭曲图。 More specifically, we consider $1$-parameter families of symplectic twist maps $(f_\varepsilon)_{\varepsilon\in \mathbb{R}}$, obtained by perturbing the generating function of an analytic map $f$ by a family of potentials $\{\varepsilon G\}_{\varepsilon\in \ mathbb {r}} $。首先,对于分析性$ g $,对于$(m,n)\ in \ mathbb {z} \ times \ mathbb {n}^*$带有$ m $和$ n $ coprime,我们研究了$ \ varepsilon \ in \ varepsilon \ in \ nathbb {r l l l l l l l l l l v _ v _ vareps的拓扑结构向量$(m,n)$。特别是我们证明,在$ f $的合适的非分类条件下,该集合最多由有限的积分组成。然后,在$ c^2 $电位产生的变形的情况下,我们利用这一点来推断可集成的符号扭转图的刚性结果。我们的分析属于任何维度,是基于对拉格朗日定期托里的几何和动态特性的彻底研究,我们认为这具有其自身利益。

In this article we study the fragility of Lagrangian periodic tori for symplectic twist maps of the $2d$-dimensional annulus and prove a rigidity result for completely integrable ones. More specifically, we consider $1$-parameter families of symplectic twist maps $(f_\varepsilon)_{\varepsilon\in \mathbb{R}}$, obtained by perturbing the generating function of an analytic map $f$ by a family of potentials $\{\varepsilon G\}_{\varepsilon\in \mathbb{R}}$. Firstly, for an analytic $G$ and for $(m,n)\in \mathbb{Z}\times \mathbb{N}^*$ with $m$ and $n$ coprime, we investigate the topological structure of the set of $\varepsilon\in \mathbb{R}$ for which $f_\varepsilon$ admits a Lagrangian periodic torus of rotation vector $(m,n)$. In particular we prove that, under a suitable non-degeneracy condition on $f$, this set consists of at most finitely many points. Then, we exploit this to deduce a rigidity result for integrable symplectic twist maps, in the case of deformations produced by a $C^2$ potential. Our analysis, which holds in any dimension, is based on a thorough investigation of the geometric and dynamical properties of Lagrangian periodic tori, which we believe is of its own interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源