论文标题

在挖掘和加权挖掘的dijoins上

On packing dijoins in digraphs and weighted digraphs

论文作者

Abdi, Ahmad, Cornuéjols, Gérard, Zlatin, Michael

论文摘要

令$ d =(v,a)$为挖掘物。 A dicut is a cut $δ^+(U)\subseteq A$ for some nonempty proper vertex subset $U$ such that $δ^-(U)=\emptyset$, a dijoin is an arc subset that intersects every dicut at least once, and more generally a $k$-dijoin is an arc subset that intersects every dicut at least $k$ times.我们的第一个结果是,可以将$ a $划分为dijoin和$(τ-1)$ - dijoin,其中$τ$表示DICUT的最小尺寸。伍德尔(Woodall)提出了更强有力的声明,即$ a $可以将其分配到$τ$ dijoins中。 令$ w \ in \ mathbb {z}^a _ {\ geq 0} $,假设每个dicut至少都有$τ$,对于某些整数$τ\ geq 2 $。令$ρ(τ,d,w):= \ frac {1}τ\ sum_ {v \ in v} m_v $,其中每个$ m_v $都是$ \ {0,1,\ ldots,τ-1 \} $等于$ w(us)的整数。我们证明了以下结果:(i)如果$ρ(τ,d,w)\ in \ {0,1 \} $,则有一个公平的$ w $ W $ WAUTER-WAUMETER-WAUMEWERTIAN-w $ WAUTHED码的大小$τ$的Dijoins。 (ii)如果$ρ(τ,d,w)= 2 $,则有一个$ W $加权的大小$τ$的Dijoins。 (iii)如果$ρ(τ,d,w)= 3 $,$τ= 3 $,而$ w = {\ bf 1} $,则可以将$ a $划分为三个dijoins。 每个结果都是最好的:(i)也不适合$ρ(τ,d,w)= 2 $,即使$ w = \ 1 $,(ii)不能以$ρ(τ,d,d,w)= 3 $而保持,并且(iii)不适合一般$ w $。

Let $D=(V,A)$ be a digraph. A dicut is a cut $δ^+(U)\subseteq A$ for some nonempty proper vertex subset $U$ such that $δ^-(U)=\emptyset$, a dijoin is an arc subset that intersects every dicut at least once, and more generally a $k$-dijoin is an arc subset that intersects every dicut at least $k$ times. Our first result is that $A$ can be partitioned into a dijoin and a $(τ-1)$-dijoin where $τ$ denotes the smallest size of a dicut. Woodall conjectured the stronger statement that $A$ can be partitioned into $τ$ dijoins. Let $w\in \mathbb{Z}^A_{\geq 0}$ and suppose every dicut has weight at least $τ$, for some integer $τ\geq 2$. Let $ρ(τ,D,w):=\frac{1}τ\sum_{v\in V} m_v$, where each $m_v$ is the integer in $\{0,1,\ldots,τ-1\}$ equal to $w(δ^+(v))-w(δ^-(v))$ mod $τ$. We prove the following results: (i) If $ρ(τ,D,w)\in \{0,1\}$, then there is an equitable $w$-weighted packing of dijoins of size $τ$. (ii) If $ρ(τ,D,w)= 2$, then there is a $w$-weighted packing of dijoins of size $τ$. (iii) If $ρ(τ,D,w)=3$, $τ=3$, and $w={\bf 1}$, then $A$ can be partitioned into three dijoins. Each result is best possible: (i) does not hold for $ρ(τ,D,w)=2$ even if $w=\1$, (ii) does not hold for $ρ(τ,D,w)=3$, and (iii) do not hold for general $w$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源