论文标题
Metastan:使用Stan的贝叶斯(基于型号)荟萃分析的R套件
MetaStan: An R package for Bayesian (model-based) meta-analysis using Stan
论文作者
论文摘要
荟萃分析方法用于结合多个研究的证据。元回归以及基于模型的荟萃分析是标准成对荟萃分析的扩展,其中有关研究级别的协变量和(手臂级)给药量或暴露量或暴露的信息。在这种情况下,贝叶斯的推理方法非常有吸引力,尤其是当荟萃分析仅基于几个研究或罕见事件时。在本文中,我们介绍了R封装Metastan,该M Metastan实现了广泛的成对和基于模型的荟萃分析模型。 广义线性混合模型(GLMM)框架用于描述成对的荟萃分析,荟萃分析和基于模型的荟萃分析模型。在GLMM框架中,可能会适应可能反映数据的性质的可能性和链接函数。例如,具有logit链接的二项式可能性用于基于具有二分端点的数据集执行荟萃分析。贝叶斯计算是通过RSTAN界面使用Stan进行的。 Stan使用属于马尔可夫链蒙特卡洛方法家族的汉密尔顿蒙特卡洛采样器。 Stan实现是通过使用合适的参数化来简化计算来完成的。 用户友好的R软件包Metastan可在Cran上获得,它支持各种成对和基于模型的荟萃分析模型。 Metastan提供了成对荟萃分析的拟合功能,可以选择包括协变量和基于模型的荟萃分析。支持的结果类型是连续的,二进制的和计数。可以从包装中获得基于模型的荟萃分析的成对荟萃分析和剂量反应图的森林图。通过临床例子证明了metastan的使用。
Meta-analysis methods are used to combine evidence from multiple studies. Meta-regression as well as model-based meta-analysis are extensions of standard pairwise meta-analysis in which information about study-level covariates and (arm-level) dosing amount or exposure may be taken into account. A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis is based on few studies only or rare events. In this article, we present the R package MetaStan which implements a wide range of pairwise and model-based meta-analysis models. A generalised linear mixed model (GLMM) framework is used to describe the pairwise meta-analysis, meta-regression and model-based meta-analysis models. Within the GLMM framework, the likelihood and link functions are adapted to reflect the nature of the data. For example, a binomial likelihood with a logit link is used to perform a meta-analysis based on datasets with dichotomous endpoints. Bayesian computations are conducted using Stan via the rstan interface. Stan uses a Hamiltonian Monte Carlo sampler which belongs to the family of Markov chain Monte Carlo methods. Stan implementations are done by using suitable parametrizations to ease computations. The user-friendly R package MetaStan, available on CRAN, supports a wide range of pairwise and model-based meta-analysis models. MetaStan provides fitting functions for pairwise meta-analysis with the option of including covariates and model-based meta-analysis. The supported outcome types are continuous, binary, and count. Forest plots for the pairwise meta-analysis and dose-response plots for the model-based meta-analysis can be obtained from the package. The use of MetaStan is demonstrated through clinical examples.