论文标题

开发神经网络以识别3D CAD模型的标准和功能

Development of a neural network to recognize standards and features from 3D CAD models

论文作者

Neb, Alexander, Briki, Iyed, Schoenhof, Raoul

论文摘要

这项工作的重点是直接从3D CAD模型中识别标准和进一步的功能。因此,对神经网络进行了训练,可以识别九类机器元素。在系统将零件标识为标准之后,例如Din en iso 8676之后的六角头螺钉,它通过应用程序编程接口(API)访问CAD系统的几何信息。在API中,系统搜索必要的信息以适当地描述零件。基于此信息,可以详细识别标准化零件,并补充更多信息。

Focus of this work is to recognize standards and further features directly from 3D CAD models. For this reason, a neural network was trained to recognize nine classes of machine elements. After the system identified a part as a standard, like a hexagon head screw after the DIN EN ISO 8676, it accesses the geometrical information of the CAD system via the Application Programming Interface (API). In the API, the system searches for necessary information to describe the part appropriately. Based on this information standardized parts can be recognized in detail and supplemented with further information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源