论文标题

统一的无限立方平面图

The Uniform Infinite Cubic Planar Graph

论文作者

Stufler, Benedikt

论文摘要

我们证明,随机简单的立方平面图$ \ mathsf {c} _n $带有偶数$ n $的Vertices,将新颖的统一无限立方平面图(UICPG)作为静置的局部限制。我们描述了如何通过应用于Angel和Schramm(Comm。Math。Phys。,2003)建立的一系列随机爆炸操作来构建极限。我们的主要技术引理是$ \ mathsf {c} _n $和一个模型之间的连续性关系,其中网络以$ \ mathsf {c} _n $的最大$ 3 $连接组件的链接插入。我们证明,最大$ 3 $连接的组件浓缩物的顶点数量为$κN$,$κ\约0.85085 $,订单$ n^{2/3} $的空气型波动。显示第二大组件的尺寸明显较小$ o_p(n^{2/3})$。

We prove that the random simple cubic planar graph $\mathsf{C}_n$ with an even number $n$ of vertices admits a novel uniform infinite cubic planar graph (UICPG) as quenched local limit. We describe how the limit may be constructed by a series of random blow-up operations applied to the dual map of the type~III Uniform Infinite Planar Triangulation established by Angel and Schramm (Comm. Math. Phys., 2003). Our main technical lemma is a contiguity relation between $\mathsf{C}_n$ and a model where the networks inserted at the links of the largest $3$-connected component of $\mathsf{C}_n$ are replaced by independent copies of a specific Boltzmann network. We prove that the number of vertices of the largest $3$-connected component concentrates at $κn$ for $κ\approx 0.85085$, with Airy-type fluctuations of order $n^{2/3}$. The second-largest component is shown to have significantly smaller size $O_p(n^{2/3})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源