论文标题

在随机顺序更新下具有抗符号的阈值模型

The threshold model with anticonformity under random sequential updating

论文作者

Nowak, Bartłomiej, Grabisch, Michel, Sznajd-Weron, Katarzyna

论文摘要

我们研究了模拟连续时间的异步更新模式下具有抗结符的阈值模型的不对称版本。我们使用三种不同的方法在完整的图上研究了该模型:平均场近似,蒙特卡洛模拟和马尔可夫链方法。与平均场方法相反,后一种方法为任意小型系统产生分析结果,而平均场方法仅适用于无限系统。我们表明,对于足够大的系统,所有三种方法都会产生相同的结果。我们考虑两种情况:(1)均质,其中所有试剂具有相同的公差阈值,以及(2)异质性,其中阈值是由通过两个正形状参数$α$和$β$的beta分布给出的阈值。在特殊情况下,异质情况可以视为将均质模型降低到均质模型的广义模型。我们表明,特别有趣的行为,包括社会滞后和临界质量,仅针对$α$和$β$的价值产生,这些价值产生了实际社会系统中观察到的分布形状。

We study an asymmetric version of the threshold model with anticonformity under asynchronous update mode that mimics continuous time. We study this model on a complete graph using three different approaches: mean-field approximation, Monte Carlo simulation, and the Markov chain approach. The latter approach yields analytical results for arbitrarily small systems, in contrast to the mean-field approach, which is strictly correct only for an infinite system. We show that for sufficiently large systems, all three approaches produce the same results, as expected. We consider two cases: (1) homogeneous, in which all agents have the same tolerance threshold, and (2) heterogeneous, in which the thresholds are given by a beta distribution parametrized by two positive shape parameters $α$ and $β$. The heterogeneous case can be treated as a generalized model that reduces to a homogeneous model in special cases. We show that particularly interesting behaviors, including social hysteresis and critical mass, arise only for values of $α$ and $β$ that yield the shape of the distribution observed in real social systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源