论文标题

划分划分的双重完美功能

Row-strict dual immaculate functions

论文作者

Niese, Elizabeth, Sundaram, Sheila, van Willigenburg, Stephanie, Vega, Julianne, Wang, Shiyun

论文摘要

我们将准对称函数的新基础定义为行列双重完美的函数,为特定tableaux集的生成函数。我们确定该定义提供了一个函数,也可以通过将$ψ$相互作用应用于Berg,Bergeron,Saliola,Salrano和Zabrocki(2014)的双重完美函数(2014)并为我们的功能建立许多组合属性。我们以与Berg等类似的方式通过类似Bernstein的运营商来提供同等的功能。 AL(2014)。我们通过定义偏斜的双重完美函数和钩偶式完美函数并为其建立组合特性来结束论文。

We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We establish that this definition gives a function that can also be obtained by applying the $ψ$ involution to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014) and establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et. al (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions and establishing combinatorial properties for them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源