论文标题
解决极端喷气子结构
Resolving Extreme Jet Substructure
论文作者
论文摘要
我们研究了在喷气机的极端情况下,理论上动机的高级喷气式喷气机的有效性(最高$ n = 8 $)。先前的研究表明,高级可观察物具有强大的,可解释的工具,可探测$ n \ le 3 $硬式次级喷气的探测喷气子结构,但是对低级喷气组成匹配或略微超过其性能的深度神经网络进行了训练。我们使用深层粒子流网络(PFN)和基于变压器的网络将这项工作扩展到最多$ n = 8 $硬式喷射器,以估计分类性能的宽松上限。一个完全连接的神经网络,在一组标准的高级喷气机上运行,135 $ \ textrm {n} $ - 可观察到的可观察力和喷气质量,达到分类精度为86.90 \%\%\%,但属于PFN和变形金刚的模型不足,该模型达到了89.19 \%\%\%\%\%\%\%\%\%\ 91.27 \高级可观察物的集合未捕获的信息。然后,我们确定能够缩小这一差距的其他高级可观察物,并利用套索正规化来识别和对最相关的可观察物进行识别,并进一步了解基于成分的神经网络使用的学习策略。最终模型仅包含31个高级可观测值,并且能够匹配PFN的性能,并将变压器模型的性能近似于2 \%以内。
We study the effectiveness of theoretically-motivated high-level jet observables in the extreme context of jets with a large number of hard sub-jets (up to $N=8$). Previous studies indicate that high-level observables are powerful, interpretable tools to probe jet substructure for $N\le 3$ hard sub-jets, but that deep neural networks trained on low-level jet constituents match or slightly exceed their performance. We extend this work for up to $N=8$ hard sub-jets, using deep particle-flow networks (PFNs) and Transformer based networks to estimate a loose upper bound on the classification performance. A fully-connected neural network operating on a standard set of high-level jet observables, 135 $\textrm{N}$-subjetiness observables and jet mass, reach classification accuracy of 86.90\%, but fall short of the PFN and Transformer models, which reach classification accuracies of 89.19\% and 91.27\% respectively, suggesting that the constituent networks utilize information not captured by the set of high-level observables. We then identify additional high-level observables which are able to narrow this gap, and utilize LASSO regularization for feature selection to identify and rank the most relevant observables and provide further insights into the learning strategies used by the constituent-based neural networks. The final model contains only 31 high-level observables and is able to match the performance of the PFN and approximate the performance of the Transformer model to within 2\%.