论文标题
订单保留量子测量的地图
Order preserving maps on quantum measurements
论文作者
论文摘要
我们研究了具有后处理部分顺序的量子测量的部分等效类别的部分等效类别。后处理顺序是基本的,因为它可以通过其内在噪声比较测量值,并提供了定义量子不相容的重要概念的理由。我们的方法是基于将该集合映射到一个更简单的部分排序集中的集合,并使用保留映射的订单并研究了所得图像。目的是忽略不必要的细节,同时保持基本结构,从而简化例如检测不兼容。一种可能的选择是基于黄朱恩(Huangjun Zhu)引入的Fisher信息的地图,该信息是在阳性半基质矩阵锥中的阶数形态。我们探索该结构的特性,并通过添加限制来改善朱的不兼容标准,具体取决于测量结果的数量。我们将这种类型的构造概括为其他有序的向量空间,我们表明该地图在所有二次地图中都是最佳的。
We study the partially ordered set of equivalence classes of quantum measurements endowed with the post-processing partial order. The post-processing order is fundamental as it enables to compare measurements by their intrinsic noise and it gives grounds to define the important concept of quantum incompatibility. Our approach is based on mapping this set into a simpler partially ordered set using an order preserving map and investigating the resulting image. The aim is to ignore unnecessary details while keeping the essential structure, thereby simplifying e.g. detection of incompatibility. One possible choice is the map based on Fisher information introduced by Huangjun Zhu, known to be an order morphism taking values in the cone of positive semidefinite matrices. We explore the properties of that construction and improve Zhu's incompatibility criterion by adding a constraint depending on the number of measurement outcomes. We generalize this type of construction to other ordered vector spaces and we show that this map is optimal among all quadratic maps.