论文标题
Lagrangian歧管蒙特卡洛(Monge Carlo)
Lagrangian Manifold Monte Carlo on Monge Patches
论文作者
论文摘要
马尔可夫链蒙特卡洛(MCMC)的效率取决于如何考虑问题的基础几何形状。对于曲率较大的分布,Riemannian指标有助于有效探索目标分布。不幸的是,由于例如,它们具有大量的计算开销。使用Fisher Information矩阵来诱导歧管的电量张量重复反转,而当前的几何MCMC方法在实践中很慢。我们通过将目标分布嵌入更高维的欧几里得空间中,作为MONGE斑块,并使用通过直接几何学推理确定的诱导度量,提出了一种新的替代riemannian指标。我们的公制仅需要一阶梯度信息,并且具有快速的逆和决定因素,并且允许在问题维度中降低从立方到二次的单个迭代的计算复杂性。我们证明了Lagrangian Monte Carlo如何有效地探索目标分布。
The efficiency of Markov Chain Monte Carlo (MCMC) depends on how the underlying geometry of the problem is taken into account. For distributions with strongly varying curvature, Riemannian metrics help in efficient exploration of the target distribution. Unfortunately, they have significant computational overhead due to e.g. repeated inversion of the metric tensor, and current geometric MCMC methods using the Fisher information matrix to induce the manifold are in practice slow. We propose a new alternative Riemannian metric for MCMC, by embedding the target distribution into a higher-dimensional Euclidean space as a Monge patch and using the induced metric determined by direct geometric reasoning. Our metric only requires first-order gradient information and has fast inverse and determinants, and allows reducing the computational complexity of individual iterations from cubic to quadratic in the problem dimensionality. We demonstrate how Lagrangian Monte Carlo in this metric efficiently explores the target distributions.