论文标题

用于中等安全通信的量子远程纠缠?

Quantum Remote Entanglement for Medium-Free Secure Communication?

论文作者

Tann, Wesley Joon-Wie

论文摘要

当今的量子通信主要取决于通过光纤电缆连接的可信赖继电器(例如,量子中继器,低地球轨道卫星)以传输信息。但是,最近的证据支持了一个数十年来的概念,即当前量子通信系统考虑到的量子纠缠不一定依赖于物理中继介质。在现代量子通信网络中,这种可信赖的继电器基础架构(1)容易受到安全攻击,(2)受通道容量的限制,(3)受到破坏性损失的约束,(4)设置昂贵。量子通信中发生的量子纠缠活动的瞬时和更快的活性提出了某些非本地性质的指导。相反,既没有显示或证明地面或空间延迟来体现它。本文提出,量子理论的非本质性质控制量子纠缠。基本颗粒是通用量子体的组成部分,无论物理介质或空间近端如何,都可以实现遥远的纠缠。介绍了超导量子系统中远程纠缠的证据和理论(尤其是通信的纠缠忠诚)。一个这样的粒子,即代表量子信息的基本单位的光子,qubit $ |ψ\ rangle =α| 0 \ rangle +β| 1 \ rangle $,由带有无限精度的复数$ $(α,β)$组成的实际连续值。这些值$(α,β)$可以解释Qubits的独特性,并导致可能支持远程纠缠的身份$ quid $。通过在量子电路上运行模拟和实际量子计算,建议使用中等无安全量子通信的新方法。

Present-day quantum communication predominantly depends on trusted relays (e.g., quantum repeaters, low-Earth-orbit satellite) connected by optical fiber cables to transmit information. However, recent evidence supports a decades-old concept that quantum entanglement, harnessed by current quantum communication systems, does not necessarily rely on a physical relay medium. In modern quantum communication networks, this trusted relay infrastructure is (1) susceptible to security attacks, (2) limited by the channel capacity, (3) subject to decoherence loss, and (4) expensive to set up. The instantaneous and faster-than-light activities of quantum entanglement occurring in quantum communication have suggested guidance by some non-locality nature. On the contrary, neither ground nor space-relays have shown or been demonstrated to embody it. It is proposed in this paper that the non-locality nature of quantum theory governs quantum entanglement; elementary particles, components of a universal quantum body, can achieve remote entanglement regardless of a physical medium or spatial proximity. Evidence and theory supporting remote entanglement in superconducting quantum systems (entanglement fidelities for communication in particular) are presented. One such particle, the photon, representing a basic unit of quantum information, qubit $|ψ\rangle = α|0\rangle + β|1\rangle$, consists of real continuous values in complex numbers $(α, β)$ with infinite precision. These values $(α, β)$ can account for the distinctiveness of qubits and result in an identity $QuID$ that possibly supports remote entanglement. New approaches to medium-free secure quantum communication are suggested by running simulations and actual quantum computations on a quantum circuit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源