论文标题

通过假设学习的自主扫描探针显微镜:探索铁电材料中域切换的物理

Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials

论文作者

Liu, Yongtao, Morozovska, Anna, Eliseev, Eugene, Kelley, Kyle P., Vasudevan, Rama, Ziatdinov, Maxim, Kalinin, Sergei V.

论文摘要

我们报告了基于假设学习的自动化实验的开发和实施,在该实验中,在自主模式下运行的显微镜确定了材料响应背后的物理定律。具体而言,我们探讨了偏向引起的转化,这些转化是从电池和备忘录到铁电和抗fiferroelectrics的广泛设备和功能材料的功能。这些材料的优化和设计需要在纳米尺度上探测这些转换的机制,这是广泛的控制参数(例如应用潜力和时间)的函数,通常会导致实验上棘手的场景。同时,这些系统的行为通常在潜在竞争的理论模型或假设中被理解。在这里,我们开发了一个假设列表,该列表涵盖了域增长的可能限制情景,包括热力学,域壁固定和筛选有限。我们进一步开发和实验实施了假设驱动的自动化实验,以自主识别偏置诱导域切换的机制。该方法可以应用于具有相对较低的维控制参数空间的广泛物理和化学实验,并且系统行为的可能竞争模型理想地涵盖了全部物理意外事件的全部范围。其中包括其他扫描探针显微镜模态,例如力距离曲线测量和纳米构型,以及材料合成和优化。

We report the development and implementation of a hypothesis learning based automated experiment, in which the microscope operating in the autonomous mode identifies the physical laws behind the material's response. Specifically, we explore the bias induced transformations that underpin the functionality of broad classes of devices and functional materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these materials require probing the mechanisms of these transformations on the nanometer scale as a function of the broad range of control parameters such as applied potential and time, often leading to experimentally intractable scenarios. At the same time, often the behaviors of these systems are understood within potentially competing theoretical models, or hypotheses. Here, we develop a hypothesis list that covers the possible limiting scenarios for the domain growth, including thermodynamic, domain wall pinning, and screening limited. We further develop and experimentally implement the hypothesis driven automated experiment in Piezoresponse Force Microscopy, autonomously identifying the mechanisms of the bias induced domain switching. This approach can be applied for a broad range of physical and chemical experiments with relatively low dimensional control parameter space and for which the possible competing models of the system behavior that ideally cover the full range of physical eventualities are known or can be created. These include other scanning probe microscopy modalities such as force distance curve measurements and nanoindentation, as well as materials synthesis and optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源