论文标题

曲率感知图嵌入的异质歧管

Heterogeneous manifolds for curvature-aware graph embedding

论文作者

Di Giovanni, Francesco, Luise, Giulia, Bronstein, Michael

论文摘要

图形嵌入,其中图的节点在连续空间中以点表示,在广泛的图ML应用中使用。这种嵌入的质量至关重要地取决于空间的几何形状是否与图的几何相匹配。对于许多类型的现实图形,欧几里得空间通常是一个糟糕的选择,在许多类型的现实图形上,层次结构和幂律度分布与负曲率有关。在这方面,最近已经显示,双曲线空间和更通用的歧管(例如恒定空间和基质歧管的产物)对于大约匹配节点成对距离是有利的。但是,所有这些歧管类都是均匀的,这意味着每个点的曲率分布都是相同的,因此不适合将图形匹配图形的局部曲率(及相关结构属性)。在本文中,我们研究了一类更广泛的异质旋转对称歧管中的图形嵌入。通过在任何给定的现有均匀模型中添加一个额外的径向维度,我们都可以在图和成对距离上考虑异质曲率分布。我们评估了关于合成和真实数据集的重建任务的方法,并在更好地保存高阶结构和异质随机图生成方面表现出了潜力。

Graph embeddings, wherein the nodes of the graph are represented by points in a continuous space, are used in a broad range of Graph ML applications. The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph. Euclidean spaces are often a poor choice for many types of real-world graphs, where hierarchical structure and a power-law degree distribution are linked to negative curvature. In this regard, it has recently been shown that hyperbolic spaces and more general manifolds, such as products of constant-curvature spaces and matrix manifolds, are advantageous to approximately match nodes pairwise distances. However, all these classes of manifolds are homogeneous, implying that the curvature distribution is the same at each point, making them unsuited to match the local curvature (and related structural properties) of the graph. In this paper, we study graph embeddings in a broader class of heterogeneous rotationally-symmetric manifolds. By adding a single extra radial dimension to any given existing homogeneous model, we can both account for heterogeneous curvature distributions on graphs and pairwise distances. We evaluate our approach on reconstruction tasks on synthetic and real datasets and show its potential in better preservation of high-order structures and heterogeneous random graphs generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源