论文标题
关于类似QCD的理论和S结构理论的手性对称性破裂的推导
On the Derivation of Chiral Symmetry Breaking in QCD-like Theories and S-confining Theories
论文作者
论文摘要
最近的作品认为,QCD样理论中的手性对称性破坏的模式可以从超对称(SUSY)QCD中得出,并扰动异常介导的Susy Breaking(AMSB)。然而,尽管AMSB需要是一个很小的(但仍然很精确)的扰动,但仍有其他两个主要问题仍未解决:首先,为了得出手性对称性破坏模式,一个人需要将潜力沿特定方向最小化,以完全确定结果,因为这是一个不利的,因为它是不处木的,而这是不利的。其次,当Susy损坏时,非遗传状态可能会出现,并且与确定真空结构有关。在这项工作中,我们将重点放在Susy QCD上,其中$ n_f \ leq n_c+1 $,并使用AMSB扰动理论。在模量空间中的某个特定方向的情况下,当$ n_f <n_c $时,我们成功得出了预期的手性对称性破坏模式。但是,当$ n_f = n_c $和$ n_f = n_c+1 $时,我们表明树级AMSB会诱导失控的方向,而Baryon数字自发损坏,而Baryon数字损坏的真空可能更深,而字段值则离原点不远。这意味着需要相变和/或非晶状体物理。此外,我们通过添加全体形态质量术语的紫外线对紫外线的不敏感性进行了明确的一致性检查,我们发现AMSB电位的跳跃确实与Holomorthic质量术语的贡献相匹配。我们总体上还表明,当树级AMSB并没有消失时,S构造理论中模量空间的起源并不能持续至少。
Recent works argue that the pattern of chiral symmetry breaking in QCD-like theories can be derived from supersymmetric (SUSY) QCD with perturbation of anomaly-mediated SUSY breaking (AMSB). Nevertheless, despite the fact that AMSB needs to be a small (but still exact) perturbation, there are two other major problems remaining unsolved: first, in order to derive the chiral symmetry breaking pattern, one needs to minimize the potential along a certain specific direction, identifying this direction fully as an outcome is nontrivial given the moduli space of degenerate vacua in the SUSY limit; second, when SUSY is broken, non-holomorphic states might emerge and be relevant for determining the vacuum structure. In this work, we focus on SUSY QCD with $N_f\leq N_c+1$ and perturb the theories using AMSB. Without minimizing the potential along a certain specific direction in the moduli space, we successfully derive the expected chiral symmetry breaking pattern when $N_f<N_c$. However, when $N_f=N_c$ and $N_f=N_c+1$, we show that tree-level AMSB would induce runaway directions, along which baryon number is spontaneously broken, and the vacua with broken baryon number can be deeper while the field values are not far from the origin. This implies that phase transitions and/or non-holomorphic physics are necessary. Moreover, we perform explicit consistency checks on ultraviolet insensitivity for different $N_f$ by adding the holomorphic mass term for the last flavor, we find that the jump of AMSB potential indeed matches the contribution from the holomorphic mass term. We also show in general that, when tree-level AMSB is not vanishing, the origin of the moduli space in s-confining theories does not persist as a minimum.