论文标题
多项式图的模量的上限
Upper bounds for the moduli of polynomial-like maps
论文作者
论文摘要
我们为全局多项式的多项式限制的模量建立了Pommerenke-Levin-Yoccoz不等式的版本,并提供了两个应用。首先表明,如果任意多项式的多项式限制的模量是从下面界定的,则该力有界组合物。第二个应用程序涉及由固定点乘数的非依次值给出的立方多项式的参数切片。也就是说,主轴突和乘数切片的相交在于主要双曲线结构域的闭合,只有酷儿组件除外。
We establish a version of the Pommerenke-Levin-Yoccoz inequality for the modulus of a polynomial-like restriction of a global polynomial and give two applications. First it is shown that if the modulus of a polynomial-like restriction of an arbitrary polynomial is bounded from below then this forces bounded combinatorics. The second application concerns parameter slices of cubic polynomials given by a non-repelling value of a fixed point multiplier. Namely, the intersection of the main cubioid and the multiplier slice lies in the closure of the principal hyperbolic domain, with only possible exception of queer components.