论文标题

通过消息传递神经网络的机械驱动的紧急行为

Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks

论文作者

Prachaseree, Peerasait, Lejeune, Emma

论文摘要

从设计架构材料到跨尺度的机械行为,计算建模是固体力学中的关键工具。最近,人们对使用机器学习来降低基于物理的模拟的计算成本越来越兴趣。值得注意的是,尽管依赖图神经网络(GNN)的机器学习方法在学习机制方面取得了成功,但GNN的性能尚未针对无数的固体力学问题进行研究。在这项工作中,我们研究了GNN预测机械驱动的紧急行为的基本方面的能力:柱的几何结构与其弯曲方向之间的联系。为此,我们介绍了不对称屈曲柱(ABC)数据集,该数据集由三个不对称和异质柱几何形状组成的数据集组成,其目标是在不稳定性后对对称对称破裂(左右)的方向进行分类。由于局部几何形状,实现标准卷积神经网络元模型所需的“图像样”数据表示并不理想,因此激发了GNN的使用。除了研究GNN模型体系结构外,我们还研究了不同输入数据表示方法,数据增强以及将多个模型结合在一起的效果。虽然我们能够获得良好的结果,但我们还表明,预测基于固体力学的新兴行为是不平凡的。因为我们的模型实施和数据集都在开源许可下分布,所以我们希望未来的研究人员可以在我们的工作基础上创建增强的特定于机械的机器学习管道,以捕获复杂的几何结构的行为。

From designing architected materials to connecting mechanical behavior across scales, computational modeling is a critical tool in solid mechanics. Recently, there has been a growing interest in using machine learning to reduce the computational cost of physics-based simulations. Notably, while machine learning approaches that rely on Graph Neural Networks (GNNs) have shown success in learning mechanics, the performance of GNNs has yet to be investigated on a myriad of solid mechanics problems. In this work, we examine the ability of GNNs to predict a fundamental aspect of mechanically driven emergent behavior: the connection between a column's geometric structure and the direction that it buckles. To accomplish this, we introduce the Asymmetric Buckling Columns (ABC) dataset, a dataset comprised of three sub-datasets of asymmetric and heterogeneous column geometries where the goal is to classify the direction of symmetry breaking (left or right) under compression after the onset of instability. Because of complex local geometry, the "image-like" data representations required for implementing standard convolutional neural network based metamodels are not ideal, thus motivating the use of GNNs. In addition to investigating GNN model architecture, we study the effect of different input data representation approaches, data augmentation, and combining multiple models as an ensemble. While we were able to obtain good results, we also showed that predicting solid mechanics based emergent behavior is non-trivial. Because both our model implementation and dataset are distributed under open-source licenses, we hope that future researchers can build on our work to create enhanced mechanics-specific machine learning pipelines for capturing the behavior of complex geometric structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源