论文标题
Digiq:使用SFQ逻辑的量子计算机可扩展数字控制器
DigiQ: A Scalable Digital Controller for Quantum Computers Using SFQ Logic
论文作者
论文摘要
由于产生/路由模拟控制信号的巨大成本,在当今超导量子计算机原型中对低温Qubits的控制提出了巨大的可伸缩性挑战,该信号的巨大成本需要从室温下的经典控制器发送到稀释冰箱内的量子芯片。因此,工业和学术界的研究人员致力于设计经桥经典控制器,以减轻这些挑战。超导单通量量子(SFQ)是建议大规模填充内部控制器的经典逻辑系列。由于其超高速度和非常低的功耗,SFQ逻辑有可能最大化可伸缩性。但是,SFQ逻辑的体系结构设计由于其非常规的脉冲驱动性质以及缺乏密集的记忆和逻辑而引起了挑战。因此,在建筑层面的研究对于指导建筑师设计基于SFQ的大型量子机的经典控制器至关重要。 在本文中,我们介绍了Digiq,这是嘈杂的中级量表量子(NISQ)的第一个系统级设计,基于SFQ的经典控制器。我们对基于SFQ的控制器进行了设计空间探索,并共同设计了这些分解的量子门分解和基于SFQ的实现,以找到一个最佳的SFQ友好设计点,该设计点可以延迟和控制能力,同时确保良好的量子算法性能。我们的共同设计会导致单个指令,多个数据(SIMD)控制器体系结构,该结构具有很高的可扩展性(> 42,000 QUIT尺度),但对控制脉冲的校准施加了新的挑战。我们提出了解决这些挑战的软件级别解决方案,如果未解决的情况下会降低量子电路的保真度,鉴于Qubit硬件的缺陷。
The control of cryogenic qubits in today's superconducting quantum computer prototypes presents significant scalability challenges due to the massive costs of generating/routing the analog control signals that need to be sent from a classical controller at room temperature to the quantum chip inside the dilution refrigerator. Thus, researchers in industry and academia have focused on designing in-fridge classical controllers in order to mitigate these challenges. Superconducting Single Flux Quantum (SFQ) is a classical logic family proposed for large-scale in-fridge controllers. SFQ logic has the potential to maximize scalability thanks to its ultra-high speed and very low power consumption. However, architecture design for SFQ logic poses challenges due to its unconventional pulse-driven nature and lack of dense memory and logic. Thus, research at the architecture level is essential to guide architects to design SFQ-based classical controllers for large-scale quantum machines. In this paper, we present DigiQ, the first system-level design of a Noisy Intermediate Scale Quantum (NISQ)-friendly SFQ-based classical controller. We perform a design space exploration of SFQ-based controllers and co-design the quantum gate decompositions and SFQ-based implementation of those decompositions to find an optimal SFQ-friendly design point that trades area and power for latency and control while ensuring good quantum algorithmic performance. Our co-design results in a single instruction, multiple data (SIMD) controller architecture, which has high scalability (>42,000-qubit scales), but imposes new challenges on the calibration of control pulses. We present software-level solutions to address these challenges, which if unaddressed would degrade quantum circuit fidelity given the imperfections of qubit hardware.