论文标题

在嘈杂的列重复下匹配的种子数据库匹配

Seeded Database Matching Under Noisy Column Repetitions

论文作者

Bakirtas, Serhat, Erkip, Elza

论文摘要

通过与公共可用的相关用户数据匹配,用户从匿名数据中重新识别或去匿名化引起了隐私问题,从而导致了除匿名化之外的混淆量量度。最近的研究提供了对隐私攻击成功的条件的基本理解,无论是在存在时陷入混淆或同步错误的情况下,源于时间索引数据库的采样。本文提出了一个考虑混淆和同步错误的统一框架,并研究了在嘈杂列重复下数据库的匹配。通过设计副本检测和种子缺失检测算法,并使用信息理论工具,可以得出足够的成功匹配条件。结果表明,行大小的种子大小对数足以保证检测所有已删除的列。还证明,这种足够的条件是必要的,因此表征了噪音列重复下的数据库匹配能力的数据库匹配能力,并提供有关隐私保护的匿名和混淆时间索引数据的见解。

The re-identification or de-anonymization of users from anonymized data through matching with publicly-available correlated user data has raised privacy concerns, leading to the complementary measure of obfuscation in addition to anonymization. Recent research provides a fundamental understanding of the conditions under which privacy attacks are successful, either in the presence of obfuscation or synchronization errors stemming from the sampling of time-indexed databases. This paper presents a unified framework considering both obfuscation and synchronization errors and investigates the matching of databases under noisy column repetitions. By devising replica detection and seeded deletion detection algorithms, and using information-theoretic tools, sufficient conditions for successful matching are derived. It is shown that a seed size logarithmic in the row size is enough to guarantee the detection of all deleted columns. It is also proved that this sufficient condition is necessary, thus characterizing the database matching capacity of database matching under noisy column repetitions and providing insights on privacy-preserving publication of anonymized and obfuscated time-indexed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源