论文标题

来自晶体可塑性模拟的机器学习凸和纹理依赖性宏观产率

Machine-learning convex and texture-dependent macroscopic yield from crystal plasticity simulations

论文作者

Fuhg, Jan N., van Wees, Lloyd, Obstalecki, Mark, Shade, Paul, Bouklas, Nikolaos, Kasemer, Matthew

论文摘要

多晶材料的微观结构对其宏观变形响应的影响仍然是材料工程中的主要问题之一。对于以弹性变形响应为特征的材料,已经开发了表征晶体塑性(CP)的预测计算模型。但是,由于它们对计算资源的巨大需求,CP模拟不能直接实现在诸如Fe $^{2} $之类的层次计算模型中。这种瓶颈增强了可以通过微观结构数量直接告知宏观模拟工具的开发。使用CP的3D有限元求解器,我们基于一般的加载条件和晶体纹理生成宏观产量功能数据库。此外,我们假设产量功能独立于产量函数的静水压力。利用统计建模的进步,我们描述并应用了一个机器学习框架,以预测宏观产量,这是晶体学纹理的函数。通过使用部分输入凸神经网络作为预测工具,可以保证数据驱动的产量函数的凸度。此外,为了允许预测的收益函数直接合并到时间整合方案中,根据有限元方法的需要,将屈服表面解释为签名距离函数级别集的边界。

The influence of the microstructure of a polycrystalline material on its macroscopic deformation response is still one of the major problems in materials engineering. For materials characterized by elastic-plastic deformation responses, predictive computational models to characterize crystal-plasticity (CP) have been developed. However, due to their large demand of computational resources, CP simulations cannot be straightforwardly implemented in hierarchical computational models such as FE$^{2}$. This bottleneck intensifies the need for the development of macroscopic simulation tools that can be directly informed by microstructural quantities. Using a 3D Finite-Element solver for CP, we generate a macroscopic yield function database based on general loading conditions and crystallographic texture. We furthermore assume an independence of the yield function to hydrostatic pressure of the yield function. Leveraging the advancement in statistical modeling we describe and apply a machine learning framework for predicting macroscopic yield as a function of crystallographic texture. The convexity of the data-driven yield function is guaranteed by using partially input convex neural networks as the predictive tool. Furthermore, in order to allow for the predicted yield function to be directly incorporated in time-integration schemes, as needed for the Finite Element method, the yield surfaces are interpreted as the boundaries of signed distance function level sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源