论文标题

强大的矢量量化变量自动编码器

Robust Vector Quantized-Variational Autoencoder

论文作者

Lai, Chieh-Hsin, Zou, Dongmian, Lerman, Gilad

论文摘要

图像生成模型可以学习训练数据的分布,因此通过从这些分布中进行抽样来生成示例。但是,当培训数据集被异常值损坏时,生成模型可能会产生与异常值相似的示例。实际上,一小部分离群值可能会诱导最新的生成模型,例如量化量化变量自动编码器(VQ-VAE),以从异常值中学习重要的模式。为了减轻此问题,我们提出了一个基于VQ-VAE的稳健生成模型,我们将其命名为ROBRUST VQ-VAE(RVQ-VAE)。为了实现鲁棒性,RVQ-VAE使用两个单独的代码书对嵌入式和离群值。为了确保代码簿嵌入正确的组件,我们在每个培训时期迭代更新嵌入式和异常值的集合。为了确保编码的数据点与正确的代码簿匹配,我们使用加权欧几里得距离进行量化,其权重由代码簿的方向差异确定。这两个代码手册都与编码器和解码器一起根据重建损失和量化损失共同培训。我们在实验上证明,即使大部分训练数据点损坏了RVQ-VAE,即使大部分培训数据都可以从嵌入式中产生示例。

Image generative models can learn the distributions of the training data and consequently generate examples by sampling from these distributions. However, when the training dataset is corrupted with outliers, generative models will likely produce examples that are also similar to the outliers. In fact, a small portion of outliers may induce state-of-the-art generative models, such as Vector Quantized-Variational AutoEncoder (VQ-VAE), to learn a significant mode from the outliers. To mitigate this problem, we propose a robust generative model based on VQ-VAE, which we name Robust VQ-VAE (RVQ-VAE). In order to achieve robustness, RVQ-VAE uses two separate codebooks for the inliers and outliers. To ensure the codebooks embed the correct components, we iteratively update the sets of inliers and outliers during each training epoch. To ensure that the encoded data points are matched to the correct codebooks, we quantize using a weighted Euclidean distance, whose weights are determined by directional variances of the codebooks. Both codebooks, together with the encoder and decoder, are trained jointly according to the reconstruction loss and the quantization loss. We experimentally demonstrate that RVQ-VAE is able to generate examples from inliers even if a large portion of the training data points are corrupted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源