论文标题
多项式的除数问题
A Divisor problem for polynomials
论文作者
论文摘要
我们表征所有具有\ [f(p)\ mid f(p)\ mid f(p^{p}),〜\ text {对于所有足够大的Primes} p \ geq n(f)的属性的所有一元多项式$ f(x)\ in \ mathbb {z} [x] $。 \]我们还提供必要的条件和足够的条件,适用于一元多项式$ f(x)\ in \ mathbb {z} [x] $满足所有Primes $ p $的满足$ f(p)\ mid f(p)\ mid f(p^{p})$。
We characterize all monic polynomials $f(x) \in \mathbb{Z}[x]$ that have the property that \[f(p) \mid f(p^{p}),~\text{for all sufficiently large primes }p \geq N(f). \] We also give necessary conditions and a sufficient condition for monic polynomials $f(x) \in \mathbb{Z}[x]$ to satisfy $f(p) \mid f(p^{p})$ for all primes $p$.