论文标题

某些Schrödinger算子在双曲线空间上的逆定位和全局近似

Inverse localization and global approximation for some Schrödinger operators on hyperbolic spaces

论文作者

Enciso, Alberto, García-Ruiz, Alba, Peralta-Salas, Daniel

论文摘要

我们考虑了某些Schrödinger操作员的高能量特征功能是否在$ d $ d $二维的持续曲率$-κ^2 $的高度夸张空间足够灵活,可以近似于Helmholtz方程$δH+H = 0 $ the $ flenge的helmholtz方程$ \ \ \ \ \ \ \ \ \ \ \ \ r}^d $(y Mathbf)^d $ a = 0 $(由特征值$λ\ gg 1 $确定。这个问题是由于以下事实,即,由于局部韦尔定律的渐近学,近似拉普拉斯特征函数确实在任何紧凑的riemannian歧管上都具有这种近似特性。在本文中,我们对双曲线空间上的库仑和谐波振荡器操作员特别感兴趣。由于这些运算符界面状态的空间的尺寸倾向于无穷大,因为$κ$倾向于0,人们可以希望通过特征函数将解决方案近似于helmholtz方程,以示一些$κ> 0 $,而不是先验固定的$κ> 0 $。我们的主要结果表明,在适当的假设下确实是这种情况。我们还证明了一个全局近似定理,其在紧凑型集合外的双曲线空间等均衡的流形上具有衰减的衰减,并考虑在$ \ mathbf {h h}^d(κ)上应用热方程。尽管全局近似和反近似结果在启发式上相关,因为这两个定理都探索了双曲线空间上椭圆方程的溶液的灵活性,但我们将看到这些定理背后的基本思想截然不同。

We consider the question of whether the high-energy eigenfunctions of certain Schrödinger operators on the $d$-dimensional hyperbolic space of constant curvature $-κ^2$ are flexible enough to approximate an arbitrary solution of the Helmholtz equation $Δh+h=0$ on $\mathbf{R}^d$, over the natural length scale $O(λ^{-1/2})$ determined by the eigenvalue $λ\gg 1$. This problem is motivated by the fact that, by the asymptotics of the local Weyl law, approximate Laplace eigenfunctions do have this approximation property on any compact Riemannian manifold. In this paper we are specifically interested in the Coulomb and harmonic oscillator operators on the hyperbolic spaces $\mathbf{H}^d(κ)$. As the dimension of the space of bound states of these operators tends to infinity as $κ$ tends to 0, one can hope to approximate solutions to the Helmholtz equation by eigenfunctions for some $κ> 0$ that is not fixed a priori. Our main result shows that this is indeed the case, under suitable hypotheses. We also prove a global approximation theorem with decay for the Helmholtz equation on manifolds that are isometric to the hyperbolic space outside a compact set, and consider an application to the study of the heat equation on $\mathbf{H}^d(κ)$. Although global approximation and inverse approximation results are heuristically related in that both theorems explore flexibility properties of solutions to elliptic equations on hyperbolic spaces, we will see that the underlying ideas behind these theorems are very different.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源