论文标题
在连续时间生存和事件历史分析中鉴定边际因果效应的图形标准
Graphical criteria for the identification of marginal causal effects in continuous-time survival and event-history analyses
论文作者
论文摘要
我们考虑连续的时间生存或更一般的事件历史环境,其目的是推断时间依赖的治疗过程的因果效应。这是对(可能假设)干预对治疗过程强度(即随机干预措施的强度的影响)的影响的形式化的。为了确定是否可以从典型的观察性观察中得出有关干预情况的有效推断,即非实验性数据,我们提出的图形规则表明观察到的信息是否足以通过适当的重新降低来识别所需的因果关系。与众所周知的因果定向无环图相比,相应的动态图将因果语义与局部独立模型结合在一起,用于多元计数过程。重要的是,我们强调说,审查数据的因果推断需要对审查过程的结构假设,而不是通常的独立审查假设,可以以图形方式表示和验证。我们的结果建立了一般的非参数可识别性,并且不依赖特定的生存模型。我们用有关HPV测试的宫颈癌筛查的数据示例来说明我们的建议,其中通过重新加权累积入射曲线估算了所需的效果。
We consider continuous-time survival or more general event-history settings, where the aim is to infer the causal effect of a time-dependent treatment process. This is formalised as the effect on the outcome event of a (possibly hypothetical) intervention on the intensity of the treatment process, i.e. a stochastic intervention. To establish whether valid inference about the interventional situation can be drawn from typical observational, i.e. non-experimental, data we propose graphical rules indicating whether the observed information is sufficient to identify the desired causal effect by suitable re-weighting. In analogy to the well-known causal directed acyclic graphs, the corresponding dynamic graphs combine causal semantics with local independence models for multivariate counting processes. Importantly, we highlight that causal inference from censored data requires structural assumptions on the censoring process beyond the usual independent censoring assumption, which can be represented and verified graphically. Our results establish general non-parametric identifiability and do not rely on particular survival models. We illustrate our proposal with a data example on HPV-testing for cervical cancer screening, where the desired effect is estimated by re-weighted cumulative incidence curves.