论文标题
使用重要性(重新)对粒子传输中的蒙特卡洛模拟的重要性(重新)加权进行多元误差建模和不确定性定量
Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport
论文作者
论文摘要
在计算剂量中对不确定性的快速准确预测对于确定放射治疗中健壮的治疗计划至关重要。这需要解决不确定参数或初始条件的粒子传输问题的解决方案。蒙特卡洛方法通常用于解决运输问题,尤其是用于需要高精度的应用。在这些情况下,由于长期运行时,参数空间中不同点上反复对问题的重复模拟的常见非侵入解决方案策略迅速变得不可行。然而,侵入性方法限制了与专有模拟引擎结合使用的可用性。在我们之前的论文[51]中,我们证明了一种在质子剂量计算中应用新的非侵入性不确定性定量方法,并在现实的患者数据上使用正常分布的错误。在本文中,我们引入了广义公式,并重点介绍了该方法的更深入的理论分析,这些分析涉及估计值的偏见,误差和收敛性。所提出方法的多元输入模型进一步支持几乎任意的误差相关模型。我们演示了该框架如何用于建模并有效地量化复杂自动相关和时间相关的错误。
Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common non-intrusive solution strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Intrusive methods however limit the usability in combination with proprietary simulation engines. In our previous paper [51], we demonstrated the application of a new non-intrusive uncertainty quantification approach for Monte Carlo simulations in proton dose calculations with normally distributed errors on realistic patient data. In this paper, we introduce a generalized formulation and focus on a more in-depth theoretical analysis of this method concerning bias, error and convergence of the estimates. The multivariate input model of the proposed approach further supports almost arbitrary error correlation models. We demonstrate how this framework can be used to model and efficiently quantify complex auto-correlated and time-dependent errors.