论文标题

振荡器模型的多种性和异常性电网模型

Multistability and anomalies in oscillator models of lossy power grids

论文作者

Delabays, Robin, Jafarpour, Saber, Bullo, Francesco

论文摘要

散发耦合振荡器的分析在电网中具有挑战性,并且高度相关。由于缺乏耗散耦合引起的网络对称性,因此不适用标准数学方法。在这里,我们证明了在耗散耦合振荡器中稳定同步状态与其状态空间的{绕组分区}之间的稳定同步态之间的对应关系,这是网络拓扑引起的几何概念。利用此绕组分区,我们伴随本文采用算法来计算散发耦合振荡器的复杂网络的所有同步解决方案。这些几何和计算工具使我们能够识别有损耗的网络系统的异常行为。违反直觉,我们表明循环流和耗散可以增加系统的传输能力,并且耗散可以促进多种性能。我们将几何框架应用于IEEE RTS-96测试系统上的功率流,在该系统中,我们可以在其中识别两个具有不同环路的高压解决方案。

The analysis of dissipatively coupled oscillators is challenging and highly relevant in power grids. Standard mathematical methods are not applicable, due to the lack of network symmetry induced by dissipative couplings. Here we demonstrate a close correspondence between stable synchronous states in dissipatively coupled oscillators, and the {winding partition} of their state space, a geometric notion induced by the network topology. Leveraging this winding partition, we accompany this article with an algorithms to compute all synchronous solutions of complex networks of dissipatively coupled oscillators. These geometric and computational tools allow us to identify anomalous behaviors of lossy networked systems. Counterintuitively, we show that loop flows and dissipation can increase the system's transfer capacity, and that dissipation can promote multistability. We apply our geometric framework to compute power flows on the IEEE RTS-96 test system, where we identify two high voltage solutions with distinct loop flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源