论文标题

安全意识的虚拟网络嵌入基于强化学习的算法

Security-Aware Virtual Network Embedding Algorithm based on Reinforcement Learning

论文作者

Zhang, Peiying, Wang, Chao, Jiang, Chunxiao, Benslimane, Abderrahim

论文摘要

虚拟网络嵌入(VNE)算法始终是网络虚拟化(NV)技术中的关键问题。目前,该领域的研究仍然存在以下问题。解决VNE问题的传统方法是使用启发式算法。但是,此方法依赖于手动嵌入规则,这与VNE的实际情况不符。此外,由于使用智能学习算法来解决VNE问题已成为一种趋势,因此该方法逐渐过时。同时,VNE存在一些安全问题。但是,没有智能算法来解决VNE的安全问题。因此,本文提出了一种基于强化学习(RL)的安全意识VNE算法。在培训阶段,我们将策略网络用作学习代理,并以基板节点的提取属性形成功能矩阵作为输入。在此环境中对学习代理进行培训,以获取每个基板节点的映射概率。在测试阶段,我们根据映射概率映射节点,并使用广度优先的策略(BFS)来映射链接。对于安全问题,我们为每个基板节点的每个虚拟节点和安全级别约束添加了安全要求级别的约束。虚拟节点只能嵌入不低于安全要求级别的基板节点。实验结果表明,就长期平均收益,长期收入消耗率和虚拟网络请求(VNR)接受率而言,所提出的算法优于其他典型算法。

Virtual network embedding (VNE) algorithm is always the key problem in network virtualization (NV) technology. At present, the research in this field still has the following problems. The traditional way to solve VNE problem is to use heuristic algorithm. However, this method relies on manual embedding rules, which does not accord with the actual situation of VNE. In addition, as the use of intelligent learning algorithm to solve the problem of VNE has become a trend, this method is gradually outdated. At the same time, there are some security problems in VNE. However, there is no intelligent algorithm to solve the security problem of VNE. For this reason, this paper proposes a security-aware VNE algorithm based on reinforcement learning (RL). In the training phase, we use a policy network as a learning agent and take the extracted attributes of the substrate nodes to form a feature matrix as input. The learning agent is trained in this environment to get the mapping probability of each substrate node. In the test phase, we map nodes according to the mapping probability and use the breadth-first strategy (BFS) to map links. For the security problem, we add security requirements level constraint for each virtual node and security level constraint for each substrate node. Virtual nodes can only be embedded on substrate nodes that are not lower than the level of security requirements. Experimental results show that the proposed algorithm is superior to other typical algorithms in terms of long-term average return, long-term revenue consumption ratio and virtual network request (VNR) acceptance rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源