论文标题

通过热内核的共形嵌入

Conformal Embeddings via Heat Kernel

论文作者

Su, Zhitong

论文摘要

对于任何n维紧凑型riemannian歧管$ m $,带有光滑度量$ g $,通过使用Bérard-Besson-Gallot'94引入的热内核嵌入,我们本质上构建了一个规范的结构式嵌入$ c_ {t,k} $: $ t> 0 $足够小,$ q(t)\ gg t^{ - \ frac {n} {2}}} $和$ k $作为$ O(t^l)$的函数。我们的方法涉及找到所有这些规范的保形嵌入,这表明了与Wang-Zhu'15引入的等距嵌入的区别。

For any n-dimensional compact Riemannian Manifold $M$ with smooth metric $g$, by employing the heat kernel embedding introduced by Bérard-Besson-Gallot'94, we intrinsically construct a canonical family of conformal embeddings $C_{t,k}$: $M\rightarrow\mathbb{R}^{q(t)}$, with $t>0$ sufficiently small, $q(t)\gg t^{-\frac{n}{2}}$, and $k$ as a function of $O(t^l)$ in proper sense. Our approach involves finding all these canonical conformal embeddings, which shows the distinctions from the isometric embeddings introduced by Wang-Zhu'15.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源