论文标题
SRPCN:基于结构检索的点完成网络
SRPCN: Structure Retrieval based Point Completion Network
论文作者
论文摘要
给定部分对象和一些完整的对象作为参考,点云完成旨在恢复真实的形状。但是,现有方法几乎不关注一般形状,这导致完成结果的真实性不佳。此外,缺失的模式在现实中是多种多样的,但是现有方法只能处理固定模式,这意味着概括能力差。考虑到部分点云是相应的完整云的一个子集,我们将它们视为相同分布的不同样本,并提出了基于结构的基于结构检索的点完成网络(SRPCN)。它首先使用K-均值聚类来提取结构点并将其分散到分布中,然后将KL差异用作指标,以找到最能匹配数据库中输入的完整结构点云。最后,采用类似PCN的解码器网络来基于检索到的结构点云生成最终结果。由于结构在描述对象的一般形状中起着重要作用,并且提出的结构检索方法对缺失模式具有鲁棒性,因此实验表明我们的方法可以产生更真实的结果,并且具有更强的概括能力。
Given partial objects and some complete ones as references, point cloud completion aims to recover authentic shapes. However, existing methods pay little attention to general shapes, which leads to the poor authenticity of completion results. Besides, the missing patterns are diverse in reality, but existing methods can only handle fixed ones, which means a poor generalization ability. Considering that a partial point cloud is a subset of the corresponding complete one, we regard them as different samples of the same distribution and propose Structure Retrieval based Point Completion Network (SRPCN). It first uses k-means clustering to extract structure points and disperses them into distributions, and then KL Divergence is used as a metric to find the complete structure point cloud that best matches the input in a database. Finally, a PCN-like decoder network is adopted to generate the final results based on the retrieved structure point clouds. As structure plays an important role in describing the general shape of an object and the proposed structure retrieval method is robust to missing patterns, experiments show that our method can generate more authentic results and has a stronger generalization ability.