论文标题

在Connes-kasparov同构中,I:真正还原组的C* - 代数减少和钢化双重的K理论

On the Connes-Kasparov isomorphism, I: The reduced C*-algebra of a real reductive group and the K-theory of the tempered dual

论文作者

Clare, Pierre, Higson, Nigel, Song, Yanli, Tang, Xiang

论文摘要

这是两篇论文中的第一篇,该论文专门用于计算与Morita等效性的连接,线性,实际还原群的降低的C*代数,以及对这些组的Connes-Kasparov猜想的验证。这些结果最初是由安东尼·瓦瑟曼(Antony Wassermann)于1987年宣布的。在第一部分中,我们将详细介绍C* - 代数莫里塔(Morita)等价性,然后计算Connes-kasparov形态,这些形态符合发冷的代表理论的某些结果,我们将在第二部分中使用david Vected david vogan demed dual dual dual的工具中的第二部分证明。

This is the first of two papers dedicated to the computation of the reduced C*-algebra of a connected, linear, real reductive group up to Morita equivalence, and the verification of the Connes-Kasparov conjecture for these groups. These results were originally announced by Antony Wassermann in 1987. In Part I we shall give details of the C*-algebraic Morita equivalence, and then compute the Connes-Kasparov morphism subject to some results in tempered representation theory that we shall prove in Part II using tools from David Vogan's classification of the tempered dual.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源