论文标题
在Connes-kasparov同构中,I:真正还原组的C* - 代数减少和钢化双重的K理论
On the Connes-Kasparov isomorphism, I: The reduced C*-algebra of a real reductive group and the K-theory of the tempered dual
论文作者
论文摘要
这是两篇论文中的第一篇,该论文专门用于计算与Morita等效性的连接,线性,实际还原群的降低的C*代数,以及对这些组的Connes-Kasparov猜想的验证。这些结果最初是由安东尼·瓦瑟曼(Antony Wassermann)于1987年宣布的。在第一部分中,我们将详细介绍C* - 代数莫里塔(Morita)等价性,然后计算Connes-kasparov形态,这些形态符合发冷的代表理论的某些结果,我们将在第二部分中使用david Vected david vogan demed dual dual dual的工具中的第二部分证明。
This is the first of two papers dedicated to the computation of the reduced C*-algebra of a connected, linear, real reductive group up to Morita equivalence, and the verification of the Connes-Kasparov conjecture for these groups. These results were originally announced by Antony Wassermann in 1987. In Part I we shall give details of the C*-algebraic Morita equivalence, and then compute the Connes-Kasparov morphism subject to some results in tempered representation theory that we shall prove in Part II using tools from David Vogan's classification of the tempered dual.