论文标题
Halfin-Whitt制度中的连接最短的标题系统:收敛速率与扩散极限
The join-the-shortest-queue system in the Halfin-Whitt regime: rates of convergence to the diffusion limit
论文作者
论文摘要
我们表明,在Halfin-Whitt制度中,Join-the-the-theSt-themest-Queue(JSQ)系统的稳态分布收敛到其扩散极限,速度至少为$ 1/\ sqrt {n} $,其中$ n $是服务器的数量。我们的证明使用Stein的方法,具体来说,最近提出的预制发电机比较方法。 JSQ系统是非平凡的,高维的,并且具有状态空间的崩溃部分,我们的分析可能是希望将方法应用于自己的环境的读者的有用示例。
We show that the steady-state distribution of the join-the-shortest-queue (JSQ) system converges, in the Halfin-Whitt regime, to its diffusion limit at a rate of at least $1/\sqrt{n}$, where $n$ is the number of servers. Our proof uses Stein's method and, specifically, the recently proposed prelimit generator comparison approach. The JSQ system is non-trivial, high-dimensional, and has a state-space collapse component, and our analysis may serve as a helpful example to readers wishing to apply the approach to their own setting.