论文标题
T-Varieties的广义Minkowski重量和盘子环
Generalized Minkowski weights and Chow rings of T-varieties
论文作者
论文摘要
我们对Fulton的运营Chow共同体学组进行了组合表征,该组在不含收缩的情况下,就所谓的广义Minkowsky的权重来表达了所谓的普遍Minkowsky权重。我们还描述了与卡地亚不变分离的交叉产品,从组合数据方面。特别是,这提供了一种新的方式来计算不变的卡地亚分隔线的顶部相交数量组合。
We give a combinatorial characterization of Fulton's operational Chow cohomology groups of a complete , $\Q$-factorial, rational T-variety of complexity one in terms of so called generalized Minkowsky weights in the contraction-free case. We also describe the intersection product with Cartier invariant divisors in terms of the combinatorial data. In particular this provides a new way of computing top intersection numbers of invariant Cartier divisors combinatorially.