论文标题

Simgrace:一个简单的图形对比度学习的框架,而无需扩大数据

SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation

论文作者

Xia, Jun, Wu, Lirong, Chen, Jintao, Hu, Bozhen, Li, Stan Z.

论文摘要

图形对比度学习(GCL)已成为图形表示学习的主要技术,该技术最大程度地提高了共享相同语义的配对图增强之间的相互信息。不幸的是,鉴于图形数据的多样性,在增强过程中很难很好地保留语义。当前,GCL中旨在保护语义的数据扩展广泛地属于三种不令人满意的方式。首先,可以通过反复试验来手动选择增强功能。其次,可以通过麻烦的搜索选择增强。第三,可以通过引入昂贵的领域特定知识作为指导来获得增强。所有这些都限制了现有GCL方法的效率和更普遍的适用性。为了避免这些关键问题,我们提出了一个\下划线{sim} ple框架\下划线{gra} ph \下划线{c} intrastive l \ useverline {e} arning,\ textbf {simgrace} for brevity for Brevity,这不需要数据增强。具体而言,我们将原始图作为输入和GNN模型及其扰动版本作为两个编码器,以获得两个相关视图以进行对比。 Simgrace的灵感来自观察到的观察,即在编码器扰动过程中,图形数据可以很好地保留其语义,同时不需要手动反复试用器,繁琐的搜索或昂贵的域知识以进行增强选择。另外,我们解释了为什么Simgrace可以成功。此外,我们设计了被称为\ textbf {at-imgrace}的对抗训练方案,以增强图形对比度学习的鲁棒性并理论上解释原因。尽管很简单,但我们表明,与最先进的方法相比,与最先进的方法相比,Simgrace可以产生竞争性或更好的性能,同时享有前所未有的灵活性和效率。

Graph contrastive learning (GCL) has emerged as a dominant technique for graph representation learning which maximizes the mutual information between paired graph augmentations that share the same semantics. Unfortunately, it is difficult to preserve semantics well during augmentations in view of the diverse nature of graph data. Currently, data augmentations in GCL that are designed to preserve semantics broadly fall into three unsatisfactory ways. First, the augmentations can be manually picked per dataset by trial-and-errors. Second, the augmentations can be selected via cumbersome search. Third, the augmentations can be obtained by introducing expensive domain-specific knowledge as guidance. All of these limit the efficiency and more general applicability of existing GCL methods. To circumvent these crucial issues, we propose a \underline{Sim}ple framework for \underline{GRA}ph \underline{C}ontrastive l\underline{E}arning, \textbf{SimGRACE} for brevity, which does not require data augmentations. Specifically, we take original graph as input and GNN model with its perturbed version as two encoders to obtain two correlated views for contrast. SimGRACE is inspired by the observation that graph data can preserve their semantics well during encoder perturbations while not requiring manual trial-and-errors, cumbersome search or expensive domain knowledge for augmentations selection. Also, we explain why SimGRACE can succeed. Furthermore, we devise adversarial training scheme, dubbed \textbf{AT-SimGRACE}, to enhance the robustness of graph contrastive learning and theoretically explain the reasons. Albeit simple, we show that SimGRACE can yield competitive or better performance compared with state-of-the-art methods in terms of generalizability, transferability and robustness, while enjoying unprecedented degree of flexibility and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源