论文标题
抗DE保姆和Sitter Spacetime中Jackiw-teitelboim重力的方面
Aspects of Jackiw-Teitelboim Gravity in Anti-de Sitter and de Sitter spacetime
论文作者
论文摘要
我们在二阶形式主义中讨论ADS和DS空间中的JT重力。对于纯的DS JT理论,我们表明,路径积分通常会引起Hartle-Hawking Wave函数,该功能描述了由隧道“无用”或过渡振幅所产生的任意数量的断开的宇宙,这些宇宙描述了由几个扩展宇宙组成的最终状态的初始状态的隧道。这些过程可以通过由随机基质理论(RMT)组成的全息图来描述,或者,在重力侧进行了一些修改后,通过全息图,RMT被Syk理论代替。在物质存在的情况下,我们讨论了双小号路径的整体不可或缺的问题,并认为在适当的扭曲边界条件下,可以避免模量空间内部的差异,并且该系统可以从合同阶段隧道到扩展,以避免避免潜在的大爆炸/大爆炸。产生的量子扰动范围可以表现出有趣的偏离量表不变性。我们还表明,对于涉及ADS/DS病例中涉及不同界限的合适相关器,可以避免模量空间中的差异,并建议由Syk理论组成的全息图一般可以摆脱这些差异。最后,我们分析了广告双小号的几何形状,并表明进入微型典型的合奏,而不是规范的集合,对于光谱形式,并不能摆脱Moduli空间中的差异。
We discuss JT gravity in AdS and dS space in the second order formalism. For the pure dS JT theory without matter, we show that the path integral gives rise in general to the Hartle-Hawking wave function which describes an arbitrary number of disconnected universes produced by tunnelling "from nothing", or to transition amplitudes which describe the tunnelling of an initial state consisting of several contracting universes to a final state of several expanding universes. These processes can be described by a hologram consisting of Random Matrix Theory (RMT) or, we suggest, after some modification on the gravity side, by a hologram with the RMT being replaced by SYK theory. In the presence of matter, we discuss the double trumpet path integral and argue that with suitable twisted boundary conditions, a divergence in the moduli space integral can be avoided and the system can tunnel from a contracting phase to an expanding one avoiding a potential big bang/big crunch singularity. The resulting spectrum of quantum perturbations which are produced can exhibit interesting departures from scale invariance. We also show that the divergence in moduli space can be avoided for suitable correlators which involve different boundaries in the AdS/dS cases, and suggest that a hologram consisting of the SYK theory with additional matter could get rid of these divergences in general. Finally, we analyse the AdS double trumpet geometry and show that going to the micro-canonical ensemble instead of the canonical one, for the spectral form factor, does not get rid of the divergence in moduli space.