论文标题

在PA非线性下,基于高效的AutoProcoder深度学习,用于大规模的MU-MIMO下链路

Efficient Autoprecoder-based deep learning for massive MU-MIMO Downlink under PA Non-Linearities

论文作者

Cheng, Xinying, Zayani, Rafik, Ferecatu, Marin, Audebert, Nicolas

论文摘要

本文介绍了一种新的高效自动销售器(AP)的深度学习方法,用于大规模多输入多输出(MMIMO)下行链路系统,在该系统中,基站配备了大量带有能效力放大器(PAS)的天线,并提供多个用户端子。我们提出AP-MMIMO,这是一种共同消除多源干扰并补偿严重非线性(NL)PA扭曲的新方法。与以前的作品不同,AP-MMIMO的计算复杂性低,使其适合全球节能系统。具体而言,我们旨在通过利用AutoPropeCoder的概念来设计PA-Aware Precododer和接收解码器,而端到端的大型多源(MU)-MIMO Downlink使用深神经网络(NN)设计。最重要的是,拟议的AP-MMIMO适用于不同的块褪色通道方案。为了处理这种情况,我们考虑了一个两阶段的预码方案:1)使用NN-ERCODER来解决PA非线性,2)使用线性预编码器来抑制多源干扰。 NN-ERECODER和接收解码器是离线训练的,当通道变化时,只有线性预码器在线更改。后者是通过使用基于矩阵多项式的广泛使用的零孔预编码方案或其LowComplexity版本设计的。数值模拟表明,与现有文献相比,所提出的AP-MMIMO方法的复杂性显着降低,其复杂性显着降低。索引术语 - 穆尔使用者(MU)预编码,大量多输入多输出(MIMO),能源效率,硬件障碍,功率放大器(PA)非线性,自动转移器,自动编码器,深度学习,神经网络(NN)

This paper introduces a new efficient autoprecoder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user terminals. We present AP-mMIMO, a new method that jointly eliminates the multiuser interference and compensates the severe nonlinear (NL) PA distortions. Unlike previous works, AP-mMIMO has a low computational complexity, making it suitable for a global energy-efficient system. Specifically, we aim to design the PA-aware precoder and the receive decoder by leveraging the concept of autoprecoder, whereas the end-to-end massive multiuser (MU)-MIMO downlink is designed using a deep neural network (NN). Most importantly, the proposed AP-mMIMO is suited for the varying block fading channel scenario. To deal with such scenarios, we consider a two-stage precoding scheme: 1) a NN-precoder is used to address the PA non-linearities and 2) a linear precoder is used to suppress the multiuser interference. The NN-precoder and the receive decoder are trained off-line and when the channel varies, only the linear precoder changes on-line. This latter is designed by using the widely used zero-forcing precoding scheme or its lowcomplexity version based on matrix polynomials. Numerical simulations show that the proposed AP-mMIMO approach achieves competitive performance with a significantly lower complexity compared to existing literature. Index Terms-multiuser (MU) precoding, massive multipleinput multiple-output (MIMO), energy-efficiency, hardware impairment, power amplifier (PA) nonlinearities, autoprecoder, deep learning, neural network (NN)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源