论文标题

在重复排名中引入有效的帕累托 - 最佳公平与耐用摊销

Introducing the Expohedron for Efficient Pareto-optimal Fairness-Utility Amortizations in Repeated Rankings

论文作者

Kletti, Till, Renders, Jean-Michel, Loiseau, Patrick

论文摘要

我们考虑计算一系列排名的问题,该排名最大化消费者端效用,同时最大程度地减少生产者端的个人不公平性。虽然先前的工作使用线性或二次程序在BISCHASIC矩阵上解决了这个问题,但依靠Birkhoff-von Neumann(BVN)分解的方法太慢而无法大规模实施。 在本文中,我们介绍了一个几何对象,我们称之为Expohedron的多层物体,其点代表了基于位置模型(PBM)项目的所有可实现的项目。我们展示了它的一些属性,并列出了具有复杂性$ o(n^2 \ log(n))$的carathéodory分解算法,能够以$ n $ vertices的凸额表示,其中$ n $是$ n $是排名的项目数量。这样的分解使得最多可以表达出任何可行的目标曝光作为分配,最多是$ n $排名。此外,我们证明我们可以使用具有复杂性的简单几何过程$ O(n^2 \ log(n))$的简单几何过程来恢复多目标公平 - 效用优化问题的整个帕累托前沿。我们的方法比较了算法复杂性和经验运行时的线性或二次编程基线,并且适用于任何与项目相关性的非削减功能的功能。此外,我们的解决方案可以仅在$ n $排列上表示,而不是通过BVN分解实现的$(N-1)^2 + 1 $。我们对合成和现实世界数据集进行实验,确认我们的理论结果。

We consider the problem of computing a sequence of rankings that maximizes consumer-side utility while minimizing producer-side individual unfairness of exposure. While prior work has addressed this problem using linear or quadratic programs on bistochastic matrices, such approaches, relying on Birkhoff-von Neumann (BvN) decompositions, are too slow to be implemented at large scale. In this paper we introduce a geometrical object, a polytope that we call expohedron, whose points represent all achievable exposures of items for a Position Based Model (PBM). We exhibit some of its properties and lay out a Carathéodory decomposition algorithm with complexity $O(n^2\log(n))$ able to express any point inside the expohedron as a convex sum of at most $n$ vertices, where $n$ is the number of items to rank. Such a decomposition makes it possible to express any feasible target exposure as a distribution over at most $n$ rankings. Furthermore we show that we can use this polytope to recover the whole Pareto frontier of the multi-objective fairness-utility optimization problem, using a simple geometrical procedure with complexity $O(n^2\log(n))$. Our approach compares favorably to linear or quadratic programming baselines in terms of algorithmic complexity and empirical runtime and is applicable to any merit that is a non-decreasing function of item relevance. Furthermore our solution can be expressed as a distribution over only $n$ permutations, instead of the $(n-1)^2 + 1$ achieved with BvN decompositions. We perform experiments on synthetic and real-world datasets, confirming our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源